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Congestion Control Algorithms (CCAs) affect 
every Internet connection
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Fairness: whether competing 
applications share network 
bandwidth fairly

Figures from Kurose, J. F., & Ross, K. W. (2001). Computer networking: A top-down approach featuring the Internet
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Fairness: whether competing 
applications share network 
bandwidth fairly

Stability: how stable bandwidth 
allocations are (or whether 
performance oscillates) 

Utilization: whether network 
links are utilized efficiently

Figures from Kurose, J. F., & Ross, K. W. (2001). Computer networking: A top-down approach featuring the Internet
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Congestion Control Algorithms (CCAs) affect 
every Internet connection
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• Video streaming

• Online gaming

• Videoconferencing
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Companies are using new proprietary CCAs 
for different applications

D. Caban, D. Ray and S.Seshan. Understanding Congestion Control for Cloud Game Streaming. CMU REU 2020
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CCAs are implemented in thousands of lines 
of code in the kernel
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When we cannot observe CCA behavior from 
the implementation, we can use packet traces
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One way to uncover CCAs in the wild: 
Classification
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R Ware, A A Philip, N Hungria, Y Kothari, J Sherry, and S Seshan. CCAnalyzer: An Efficient and Nearly-Passive Congestion Control Classifier. In SIGCOMM 2024.
Ayush Mishra, Lakshay Rastogi, Raj Joshi, and Ben Leong. Keeping an Eye on Congestion Control in the Wild with Nebby. In SIGCOMM 2024.
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What if the CCA is truly new?
Can we say more?



Generate simple implementations of CCAs 
from packet traces showing their behavior
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Generate simple implementations of CCAs 
from packet traces showing their behavior
ü ease the analysis of known CCAs
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Generate simple implementations of CCAs 
from packet traces showing their behavior
ü ease the analysis of known CCAs

ü enable the analysis of unknown CCAs
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Abagnale uses program synthesis to reverse 
engineer CCAs
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packet 
traces CCASynthesizer
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Most congestion control code is boilerplate
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Most congestion control code is boilerplate
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Event
handlers
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Most congestion control code is boilerplate
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Boilerplate code

Event
handlers
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Most congestion control code is boilerplate
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Abagnale uses program synthesis to reverse 
engineer CCAs
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packet 
traces CCASynthesizer
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Abagnale reverse engineers CCAs by 
synthesizing event handlers
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packet 
traces CCASynthesizer Event

handlers



CCAs are modeled as a set of handler 
functions
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h(cwndi , signalsi) = cwndi+1
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The output of each execution of each handler 
is used as input to the next execution
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h(cwnd0 , signals0) = cwnd1

h(cwnd1 , signals1) = cwnd2

h(cwnd2 , signals2) = cwnd3

h(cwnd3 , signals3) = cwnd4

h(cwnd4 , signals4) = cwnd5

...
h(cwndn-1 , signalsn-1) = cwndn



The behavior in the trace is the result of 
successive execution of the handlers
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TCP Reno

h: cwnd + MSS * acked-bytes / cwnd
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Abagnale
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packet traces Synthesizer event
handlers
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Abagnale’s synthesis pipeline
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Refinement Loop

DSL Enumeration

Simulation

packet 
traces

event
handlers

Synthesizer
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Abagnale’s DSL defines the search space

31November 6, 2024

Refinement Loop

DSL Enumeration

Simulation

1



The DSL includes:

• The congestion signals that can be used as inputs
ex: cwnd, MSS, acked-bytes, time-since-loss, RTT, min-RTT, ack-rate, …

• The operators that can be used to combine them
ex: +, –, /, *, if-then-else, <, >, …

• Numerical constants c1, c2, c3, …
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Domain-Specific Language (DSL)

November 6, 2024
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TCP Reno

h: cwnd + MSS * acked-bytes / cwnd

Handlers are compositions of DSL components



Handlers are compositions of DSL components
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TCP Reno

h: cwnd + MSS * acked-bytes / cwnd

3 operators
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TCP Reno

h: cwnd + MSS * acked-bytes / cwnd

3 congestion signals + 3 operators

Handlers are compositions of DSL components



The search space grows exponentially with the 
number of DSL components
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6 DSL components
✓ Supports Reno-like CCAs

≈ 100k handlers
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14 DSL components
✓ Supports BBR-like CCAs

≈ 100M handlers
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25 DSL components
✓ Supports 13 Linux kernel CCAs

≈ 60B handlers
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25 DSL components
✓ Supports 13 Linux kernel CCAs

≈ 60B handlers
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25 DSL components
✓ Supports 13 Linux kernel CCAs

> 10177 handlers
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Abagnale’s enumeration traverses the search 
space
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Refinement Loop

DSL Enumeration

Simulation

1 2



Solver-based pruning removes 99.9999% of 
the search space
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Solver-based pruning removes all handlers that
• do not type-check, 
• do not unit-check, 
• are algebraically equivalent to other handlers
• would never increase or never decrease the signal they are computing
• …

Reverse-Engineering Congestion Control Algorithm Behavior

Solver-based pruning removes 99.9999% of 
the search space
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Solver-based pruning removes all handlers that
• do not type-check, 
• do not unit-check, 
• are algebraically equivalent to other handlers
• would never increase or never decrease the signal they are computing
• …

it still leaves >100k handlers in the search space to be explored

Reverse-Engineering Congestion Control Algorithm Behavior

Solver-based pruning removes 99.9999% of 
the search space
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Partition the space to parallelize the search
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Search space



Partition the space to parallelize the search
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Partition the space to parallelize the search
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p5

p2

p3

p0

p4

p1
We partition the search space 
such that parts:
• are disjoint

• can be encoded in the 
enumerator
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Abagnale
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Refinement Loop

DSL Enumeration

Simulation
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We simulate each candidate CCA in the same 
conditions that we collected the trace
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We simulate each candidate CCA in the same 
conditions that we collected the trace
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time (s)

collected trace
synthesized trace

We get a second trace, 
the synthesized trace, and 
we can compare them.

By
te

s 
in

 fl
ig

ht



time (s)

We will never find a CCA that exactly matches 
a noisy trace
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collected trace
synthesized trace

Unrealistic!
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time (s)

We will never find an exact match, so we look 
for an approximate match
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collected trace
synthesized trace

We look at the distance 
between the synthesized 
and the collected traces
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time (s)

trace
synthesized #1
synthesized #2

We will never find an exact match, so we look 
for an approximate match
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We look at the distance 
between the synthesized 
and the collected traces, and
select the CCA handler with 
the minimum distance
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Abagnale
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Evaluation
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We compare the semantics of Abagnale’s synthesized handler with a 
handwritten version of the handler finetuned by a domain expert
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Evaluation overview
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Evaluation overview
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We compare the semantics of Abagnale’s synthesized handler with a 
handwritten version of the handler finetuned by a domain expert

We evaluate Abagnale in 
• 13 Linux kernel CCAs
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Evaluation overview
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We compare the semantics of Abagnale’s synthesized handler with a 
handwritten version of the handler finetuned by a domain expert

We evaluate Abagnale in 
• 13 Linux kernel CCAs
• 7 unknown CCAs implemented by students as part of a class
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Evaluation overview
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We compare the semantics of Abagnale’s synthesized handler with a 
handwritten version of the handler finetuned by a domain expert

We evaluate Abagnale in 
• 13 Linux kernel CCAs
• 7 unknown CCAs implemented by students as part of a class

Abagnale finds semantically correct handlers for “Reno-like” CCAs, and 
semantically proximate handlers for “Vegas-like” and BBR.
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We compare the semantics of Abagnale’s synthesized handler with a 
handwritten version of the handler finetuned by a domain expert

We evaluate Abagnale in 
• 13 Linux kernel CCAs
• 7 unknown CCAs implemented by students as part of a class

Abagnale finds semantically correct handlers for “Reno-like” CCAs, and 
semantically proximate handlers for “Vegas-like” and BBR.

See complete evaluation in the paper!

Reverse-Engineering Congestion Control Algorithm Behavior

Evaluation overview
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BBR: Abagnale’s synthesized handler with BBR traces 
mimics PROBE_BW pulses, but with a different trigger
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BBR: Abagnale’s synthesized handler with BBR traces 
mimics PROBE_BW pulses, but with a different trigger
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BBR: Abagnale’s synthesized handler with BBR traces 
mimics PROBE_BW pulses, but with a different trigger



Abagnale outputs simple implementations of Congestion Control 
Algorithms from packet traces showing their behavior
• domain-specific strategies allow us to narrow the search space
• we capture the behavior of 13 CCAs from the Linux kernel without any prior knowledge

Reverse-Engineering Congestion Control 
Algorithm Behavior
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