
Reverse-Engineering Congestion 
Control Algorithm Behavior
Margarida Ferreira, Ranysha Ware, Yash Kothari, 
Inês Lynce, Ruben Martins, Akshay Narayan,
Justine Sherry



Congestion Control Algorithms (CCAs) affect 
every Internet connection

November 6, 2024 Reverse-Engineering Congestion Control Algorithm Behavior 2

Fairness: whether competing 
applications share network 
bandwidth fairly

Figures from Kurose, J. F., & Ross, K. W. (2001). Computer networking: A top-down approach featuring the Internet
2



Congestion Control Algorithms (CCAs) affect 
every Internet connection

November 6, 2024 Reverse-Engineering Congestion Control Algorithm Behavior 3

Fairness: whether competing 
applications share network 
bandwidth fairly

Stability: how stable bandwidth 
allocations are (or whether 
performance oscillates) 

Figures from Kurose, J. F., & Ross, K. W. (2001). Computer networking: A top-down approach featuring the Internet
3



Congestion Control Algorithms (CCAs) affect 
every Internet connection

November 6, 2024 Reverse-Engineering Congestion Control Algorithm Behavior 4

Fairness: whether competing 
applications share network 
bandwidth fairly

Stability: how stable bandwidth 
allocations are (or whether 
performance oscillates) 

Utilization: whether network 
links are utilized efficiently

Figures from Kurose, J. F., & Ross, K. W. (2001). Computer networking: A top-down approach featuring the Internet
4



November 6, 2024 Reverse-Engineering Congestion Control Algorithm Behavior

Congestion Control Algorithms (CCAs) affect 
every Internet connection

5



• Video streaming

• Online gaming

• Videoconferencing

November 6, 2024 Reverse-Engineering Congestion Control Algorithm Behavior 7

Companies are using new proprietary CCAs 
for different applications

D. Caban, D. Ray and S.Seshan. Understanding Congestion Control for Cloud Game Streaming. CMU REU 2020

7



November 6, 2024 Reverse-Engineering Congestion Control Algorithm Behavior 8

CCAs are implemented in thousands of lines 
of code in the kernel

8



When we cannot observe CCA behavior from 
the implementation, we can use packet traces

Reverse-Engineering Congestion Control Algorithm Behavior 9November 6, 2024



One way to uncover CCAs in the wild: 
Classification

Reverse-Engineering Congestion Control Algorithm Behavior 10November 6, 2024

R Ware, A A Philip, N Hungria, Y Kothari, J Sherry, and S Seshan. CCAnalyzer: An Efficient and Nearly-Passive Congestion Control Classifier. In SIGCOMM 2024.
Ayush Mishra, Lakshay Rastogi, Raj Joshi, and Ben Leong. Keeping an Eye on Congestion Control in the Wild with Nebby. In SIGCOMM 2024.



One way to uncover CCAs in the wild: 
Classification

Reverse-Engineering Congestion Control Algorithm Behavior 11November 6, 2024

R Ware, A A Philip, N Hungria, Y Kothari, J Sherry, and S Seshan. CCAnalyzer: An Efficient and Nearly-Passive Congestion Control Classifier. In SIGCOMM 2024.
Ayush Mishra, Lakshay Rastogi, Raj Joshi, and Ben Leong. Keeping an Eye on Congestion Control in the Wild with Nebby. In SIGCOMM 2024.



One way to uncover CCAs in the wild: 
Classification

Reverse-Engineering Congestion Control Algorithm Behavior 12November 6, 2024

R Ware, A A Philip, N Hungria, Y Kothari, J Sherry, and S Seshan. CCAnalyzer: An Efficient and Nearly-Passive Congestion Control Classifier. In SIGCOMM 2024.
Ayush Mishra, Lakshay Rastogi, Raj Joshi, and Ben Leong. Keeping an Eye on Congestion Control in the Wild with Nebby. In SIGCOMM 2024.



One way to uncover CCAs in the wild: 
Classification

Reverse-Engineering Congestion Control Algorithm Behavior 13November 6, 2024

R Ware, A A Philip, N Hungria, Y Kothari, J Sherry, and S Seshan. CCAnalyzer: An Efficient and Nearly-Passive Congestion Control Classifier. In SIGCOMM 2024.
Ayush Mishra, Lakshay Rastogi, Raj Joshi, and Ben Leong. Keeping an Eye on Congestion Control in the Wild with Nebby. In SIGCOMM 2024.



One way to uncover CCAs in the wild: 
Classification

Reverse-Engineering Congestion Control Algorithm Behavior 14November 6, 2024

R Ware, A A Philip, N Hungria, Y Kothari, J Sherry, and S Seshan. CCAnalyzer: An Efficient and Nearly-Passive Congestion Control Classifier. In SIGCOMM 2024.
Ayush Mishra, Lakshay Rastogi, Raj Joshi, and Ben Leong. Keeping an Eye on Congestion Control in the Wild with Nebby. In SIGCOMM 2024.



One way to uncover CCAs in the wild: 
Classification

Reverse-Engineering Congestion Control Algorithm Behavior 15November 6, 2024

R Ware, A A Philip, N Hungria, Y Kothari, J Sherry, and S Seshan. CCAnalyzer: An Efficient and Nearly-Passive Congestion Control Classifier. In SIGCOMM 2024.
Ayush Mishra, Lakshay Rastogi, Raj Joshi, and Ben Leong. Keeping an Eye on Congestion Control in the Wild with Nebby. In SIGCOMM 2024.

What if the CCA is truly new?
Can we say more?



Generate simple implementations of CCAs 
from packet traces showing their behavior

Reverse-Engineering Congestion Control Algorithm Behavior 16November 6, 2024



Generate simple implementations of CCAs 
from packet traces showing their behavior
ü ease the analysis of known CCAs

Reverse-Engineering Congestion Control Algorithm Behavior 17November 6, 2024



Generate simple implementations of CCAs 
from packet traces showing their behavior
ü ease the analysis of known CCAs

ü enable the analysis of unknown CCAs

Reverse-Engineering Congestion Control Algorithm Behavior 18November 6, 2024



Reverse-Engineering Congestion Control Algorithm Behavior

Abagnale uses program synthesis to reverse 
engineer CCAs

19November 6, 2024

packet 
traces CCASynthesizer



November 6, 2024 Reverse-Engineering Congestion Control Algorithm Behavior 20 20

Most congestion control code is boilerplate



November 6, 2024 Reverse-Engineering Congestion Control Algorithm Behavior 21 21

Most congestion control code is boilerplate



November 6, 2024 Reverse-Engineering Congestion Control Algorithm Behavior

Event
handlers

22

Most congestion control code is boilerplate

22



November 6, 2024 Reverse-Engineering Congestion Control Algorithm Behavior

Boilerplate code

Event
handlers

23

Most congestion control code is boilerplate

23



Reverse-Engineering Congestion Control Algorithm Behavior

Abagnale uses program synthesis to reverse 
engineer CCAs

24November 6, 2024

packet 
traces CCASynthesizer



Reverse-Engineering Congestion Control Algorithm Behavior

Abagnale reverse engineers CCAs by 
synthesizing event handlers

25November 6, 2024

packet 
traces CCASynthesizer Event

handlers



CCAs are modeled as a set of handler 
functions

November 6, 2024 Reverse-Engineering Congestion Control Algorithm Behavior 26

h(cwndi , signalsi) = cwndi+1



Reverse-Engineering Congestion Control Algorithm Behavior

The output of each execution of each handler 
is used as input to the next execution

27November 6, 2024

h(cwnd0 , signals0) = cwnd1

h(cwnd1 , signals1) = cwnd2

h(cwnd2 , signals2) = cwnd3

h(cwnd3 , signals3) = cwnd4

h(cwnd4 , signals4) = cwnd5

...
h(cwndn-1 , signalsn-1) = cwndn



The behavior in the trace is the result of 
successive execution of the handlers

November 6, 2024 Reverse-Engineering Congestion Control Algorithm Behavior 28

TCP Reno

h: cwnd + MSS * acked-bytes / cwnd



Reverse-Engineering Congestion Control Algorithm Behavior

Abagnale

29November 6, 2024

packet traces Synthesizer event
handlers



Reverse-Engineering Congestion Control Algorithm Behavior

Abagnale’s synthesis pipeline

30November 6, 2024

Refinement Loop

DSL Enumeration

Simulation

packet 
traces

event
handlers

Synthesizer



Reverse-Engineering Congestion Control Algorithm Behavior

Abagnale’s DSL defines the search space

31November 6, 2024

Refinement Loop

DSL Enumeration

Simulation

1



The DSL includes:

• The congestion signals that can be used as inputs
ex: cwnd, MSS, acked-bytes, time-since-loss, RTT, min-RTT, ack-rate, …

• The operators that can be used to combine them
ex: +, –, /, *, if-then-else, <, >, …

• Numerical constants c1, c2, c3, …

Reverse-Engineering Congestion Control Algorithm Behavior 32

Domain-Specific Language (DSL)

November 6, 2024



November 6, 2024 Reverse-Engineering Congestion Control Algorithm Behavior 33

TCP Reno

h: cwnd + MSS * acked-bytes / cwnd

Handlers are compositions of DSL components



Handlers are compositions of DSL components

November 6, 2024 Reverse-Engineering Congestion Control Algorithm Behavior 34

TCP Reno

h: cwnd + MSS * acked-bytes / cwnd

3 operators



November 6, 2024 Reverse-Engineering Congestion Control Algorithm Behavior 35

TCP Reno

h: cwnd + MSS * acked-bytes / cwnd

3 congestion signals + 3 operators

Handlers are compositions of DSL components



The search space grows exponentially with the 
number of DSL components

Reverse-Engineering Congestion Control Algorithm Behavior 36November 6, 2024

0

1E+09

2E+09

3E+09

4E+09

5E+09

6E+09

7E+09

0 5 10 15 20 25

N
um

be
r o

f d
ep

th
-3

 h
an

dl
er

s

Number of DSL components

More expressive DSLs



0

1E+09

2E+09

3E+09

4E+09

5E+09

6E+09

7E+09

0 5 10 15 20 25

N
um

be
r o

f d
ep

th
-3

 h
an

dl
er

s

Number of DSL components

The search space grows exponentially with the 
number of DSL components

Reverse-Engineering Congestion Control Algorithm Behavior 37November 6, 2024

6 DSL components
✓ Supports Reno-like CCAs

≈ 100k handlers



0

1E+09

2E+09

3E+09

4E+09

5E+09

6E+09

7E+09

0 5 10 15 20 25

N
um

be
r o

f d
ep

th
-3

 h
an

dl
er

s

Number of DSL components

The search space grows exponentially with the 
number of DSL components

Reverse-Engineering Congestion Control Algorithm Behavior 38November 6, 2024

14 DSL components
✓ Supports BBR-like CCAs

≈ 100M handlers



0

1E+09

2E+09

3E+09

4E+09

5E+09

6E+09

7E+09

0 5 10 15 20 25

N
um

be
r o

f d
ep

th
-3

 h
an

dl
er

s

Number of DSL components

The search space grows exponentially with the 
number of DSL components

Reverse-Engineering Congestion Control Algorithm Behavior 39November 6, 2024

25 DSL components
✓ Supports 13 Linux kernel CCAs

≈ 60B handlers



0

1E+09

2E+09

3E+09

4E+09

5E+09

6E+09

7E+09

0 5 10 15 20 25

N
um

be
r o

f d
ep

th
-3

 h
an

dl
er

s

Number of DSL components

The search space grows exponentially with the 
number of DSL components

Reverse-Engineering Congestion Control Algorithm Behavior 40November 6, 2024

25 DSL components
✓ Supports 13 Linux kernel CCAs

≈ 60B handlers



0

5E+176

1E+177

1.5E+177

2E+177

2.5E+177

3E+177

3.5E+177

4E+177

0 5 10 15 20 25

N
um

be
r o

f d
ep

th
-7

 h
an

dl
er

s

Number of DSL components

The search space grows exponentially with the 
number of DSL components

Reverse-Engineering Congestion Control Algorithm Behavior 41November 6, 2024

25 DSL components
✓ Supports 13 Linux kernel CCAs

> 10177 handlers



Reverse-Engineering Congestion Control Algorithm Behavior

Abagnale’s enumeration traverses the search 
space

42November 6, 2024

Refinement Loop

DSL Enumeration

Simulation

1 2



Solver-based pruning removes 99.9999% of 
the search space

Reverse-Engineering Congestion Control Algorithm Behavior 43November 6, 2024



Solver-based pruning removes all handlers that
• do not type-check, 
• do not unit-check, 
• are algebraically equivalent to other handlers
• would never increase or never decrease the signal they are computing
• …

Reverse-Engineering Congestion Control Algorithm Behavior

Solver-based pruning removes 99.9999% of 
the search space

44November 6, 2024



Solver-based pruning removes all handlers that
• do not type-check, 
• do not unit-check, 
• are algebraically equivalent to other handlers
• would never increase or never decrease the signal they are computing
• …

it still leaves >100k handlers in the search space to be explored

Reverse-Engineering Congestion Control Algorithm Behavior

Solver-based pruning removes 99.9999% of 
the search space

45November 6, 2024



Partition the space to parallelize the search

Reverse-Engineering Congestion Control Algorithm Behavior 46November 6, 2024

Search space



Partition the space to parallelize the search

Reverse-Engineering Congestion Control Algorithm Behavior 47November 6, 2024

p5

p2

p3

p0

p4

p1



Partition the space to parallelize the search

Reverse-Engineering Congestion Control Algorithm Behavior 48November 6, 2024

p5

p2

p3

p0

p4

p1
We partition the search space 
such that parts:
• are disjoint

• can be encoded in the 
enumerator



Reverse-Engineering Congestion Control Algorithm Behavior

Abagnale

49November 6, 2024

Refinement Loop

DSL Enumeration

Simulation

1

3

2



We simulate each candidate CCA in the same 
conditions that we collected the trace

November 6, 2024 Reverse-Engineering Congestion Control Algorithm Behavior 50

time (s)

collected trace

By
te

s 
in

 fl
ig

ht



We simulate each candidate CCA in the same 
conditions that we collected the trace

November 6, 2024 Reverse-Engineering Congestion Control Algorithm Behavior 51

time (s)

collected trace
synthesized trace

We get a second trace, 
the synthesized trace, and 
we can compare them.

By
te

s 
in

 fl
ig

ht



time (s)

We will never find a CCA that exactly matches 
a noisy trace

November 6, 2024 Reverse-Engineering Congestion Control Algorithm Behavior 52

collected trace
synthesized trace

Unrealistic!

By
te

s 
in

 fl
ig

ht



time (s)

We will never find an exact match, so we look 
for an approximate match

November 6, 2024 Reverse-Engineering Congestion Control Algorithm Behavior 53

collected trace
synthesized trace

We look at the distance 
between the synthesized 
and the collected traces

By
te

s 
in

 fl
ig

ht



time (s)

trace
synthesized #1
synthesized #2

We will never find an exact match, so we look 
for an approximate match

November 6, 2024 Reverse-Engineering Congestion Control Algorithm Behavior 54

We look at the distance 
between the synthesized 
and the collected traces, and
select the CCA handler with 
the minimum distance

By
te

s 
in

 fl
ig

ht



Reverse-Engineering Congestion Control Algorithm Behavior

Abagnale

55November 6, 2024

Refinement Loop

DSL Enumeration

Simulation

1

3

2



Evaluation

56Reverse-Engineering Congestion Control Algorithm Behavior



We compare the semantics of Abagnale’s synthesized handler with a 
handwritten version of the handler finetuned by a domain expert

Reverse-Engineering Congestion Control Algorithm Behavior

Evaluation overview

57November 6, 2024



Reverse-Engineering Congestion Control Algorithm Behavior

Evaluation overview

58

We compare the semantics of Abagnale’s synthesized handler with a 
handwritten version of the handler finetuned by a domain expert

We evaluate Abagnale in 
• 13 Linux kernel CCAs

November 6, 2024



Reverse-Engineering Congestion Control Algorithm Behavior

Evaluation overview

59

We compare the semantics of Abagnale’s synthesized handler with a 
handwritten version of the handler finetuned by a domain expert

We evaluate Abagnale in 
• 13 Linux kernel CCAs
• 7 unknown CCAs implemented by students as part of a class

November 6, 2024



Reverse-Engineering Congestion Control Algorithm Behavior

Evaluation overview

60

We compare the semantics of Abagnale’s synthesized handler with a 
handwritten version of the handler finetuned by a domain expert

We evaluate Abagnale in 
• 13 Linux kernel CCAs
• 7 unknown CCAs implemented by students as part of a class

Abagnale finds semantically correct handlers for “Reno-like” CCAs, and 
semantically proximate handlers for “Vegas-like” and BBR.

November 6, 2024



We compare the semantics of Abagnale’s synthesized handler with a 
handwritten version of the handler finetuned by a domain expert

We evaluate Abagnale in 
• 13 Linux kernel CCAs
• 7 unknown CCAs implemented by students as part of a class

Abagnale finds semantically correct handlers for “Reno-like” CCAs, and 
semantically proximate handlers for “Vegas-like” and BBR.

See complete evaluation in the paper!

Reverse-Engineering Congestion Control Algorithm Behavior

Evaluation overview

61November 6, 2024



Reverse-Engineering Congestion Control Algorithm Behavior 62November 6, 2024

BBR: Abagnale’s synthesized handler with BBR traces 
mimics PROBE_BW pulses, but with a different trigger



Reverse-Engineering Congestion Control Algorithm Behavior 63November 6, 2024

BBR: Abagnale’s synthesized handler with BBR traces 
mimics PROBE_BW pulses, but with a different trigger



Reverse-Engineering Congestion Control Algorithm Behavior 64November 6, 2024

BBR: Abagnale’s synthesized handler with BBR traces 
mimics PROBE_BW pulses, but with a different trigger



Abagnale outputs simple implementations of Congestion Control 
Algorithms from packet traces showing their behavior
• domain-specific strategies allow us to narrow the search space
• we capture the behavior of 13 CCAs from the Linux kernel without any prior knowledge

Reverse-Engineering Congestion Control 
Algorithm Behavior

Margarida Ferreira
margarida@cmu.edu
marghrid.github.io

mailto:margarida@cmu.edu
https://marghrid.github.io/

