Reverse-Engineering Congestion
Control Algorithm Behavior

x:::;:::::\ / Margarida Ferreira, Ranysha Ware, Yash Kothari,
Inés Lynce, Ruben Martins, Akshay Narayan,

Justine Sherry

Carnegie N
arnegie
Mellon Viclloste

TECNICO
LISBOA

U

University Portugal

Congestion Control Algorithms (CCAs) affect
every Internet connection

Full bandwidth
utilization line

- Equal
3 bandwidth
) share
3

e

E= D

~N

c , B

Rl

ko]

Q

C

c

S C

Connection 1 throughput ’I?
Fairness: whether competing
applications share network
bandwidth fairly

Figures from Kurose, J. F., & Ross, K. W. (2001). Computer networking: A top-down approach featuring the Internet
November 6, 2024 Reverse-Engineering Congestion Control Algorithm Behavior

Congestion Control Algorithms (CCAs) affect
every Internet connection

Full bandwidth

utilization line
- Equal . 24K
_§. b:ndmdth >

share
2 3
o £ 16K+
= D 2
c
N o
5 B Z
- (]
g g 8K~
g , S
v} C
A

Connection 1 throughput ’I?
Fairness: whether competing Stability: how stable bandwidth

applications share network allocations are (or whether
bandwidth fairly performance oscillates)

Figures from Kurose, J. F., & Ross, K. W. (2001). Computer networking: A top-down approach featuring the Internet
November 6, 2024 Reverse-Engineering Congestion Control Algorithm Behavior

Congestion Control Algorithms (CCAs) affect
every Internet connection

R4

Full bandwidth 1

utilization line Equal 24 K-
3 bandwidth Data packets
5 share %
g g 16 K
£ D i s : ACK packets
§ é" 8 K
8 c -

A’ s
Time

Connection 1 throughput ’I?]
Fairness: whether competing Stability: how stable bandwidth Utilization: whether network
applications share network allocations are (or whether links are utilized efficiently
bandwidth fairly performance oscillates)

Figures from Kurose, J. F., & Ross, K. W. (2001). Computer networking: A top-down approach featuring the Internet
November 6, 2024 Reverse-Engineering Congestion Control Algorithm Behavior

Congestion Control Algorithms (CCAs) affect
every Internet connection

Beyond Jain’s Fairness Index: Setting the Bar For
The Deployment of Congestion Control Algorithms

Ranysha Ware Matthew K. Mukerjee
Carnegie Mellon University Nefeli Networks
rware@cs.cmu.edu mukerjee@nefeli.io
ABSTRACT
The Internet ity faces an explosion in new

control algorithms such as Copn Spruul PCC, and BBR. In this
paper, we discuss ide for deploying new algorith
on the Internet. While past efforts have focused on achieving
‘fairness’ or ‘friendliness’ between new algorithms and deployed
algorithms, we instead advocate for an approach centered on
quantifying and limiting harm caused by the new algorithm on
the status quo. We argue that a harm-based approach is more
practical, more future proof, and handles a wider range of quality
metrics than traditional notions of fairness and friendliness.

ACM Reference Format:

Ranysha Ware, Matthew K. Mukerjee, Srinivasan
Seshan, and Justine Sherry. 2019. Beyond Jain’s Fairness
Index: Setting the Bar For The Deployment of Conges-
tion Control Algorithms. In The 18th ACM Workshop
on Hot Topics in Networks (HotNets ’19), November 13-15,
2019, Princeton, NJ, USA. ACM, New York, NY, USA,
8 pages. https://doi.org/10.1145/3365609.3365855

1 INTRODUCTION

In recent years, the networking research community has
d an explosion of new control algorithms
(CCAS) [1,2,5, 6, 25-27], many of which are being explored
by Internet content providers [4, 19]. This state of affairs
brings the community back to an age-old question: what
criteria do we use to decide whether a new congestion control
algorithm is acceptable to deploy on the Internet? Without a
standard deployment threshold, we are left without foundation
to argue whether a service provider’s new algorithm is or
is not overly-aggressive.
A deployment threshold concerns inter-CCA phenomena,

not intra-CCA Rather than analyzing the
personal

or classroom use is granted without fee provided that copies are not made or
bear this notice

and the fll citation o the first page. Copyrights for third-party components
of this work must be honored. For all other uses, contact the owner/author(s).
HotNets’19, November 14-15, 2019, Princeton Nj, USA

© 2019 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-7020-2/19/1...$15.00
https://doi.org/10.1145/3365609.3365855

November 6, 2024

Srinivasan Seshan Justine Sherry
Carnegie Mellon University ~Carnegie Mellon University
srini@cs.cmu.edu sherry@cs.cmu.edu

outcomes between a collection of flows, all using some CCA
a, we need to analyze what happens when a new CCA a is
deployed on a network with flows using some legacy CCA
B.1s a’s impact on the status quo is acceptable?

Our community has traditionally analyzed inter-CCA
competition in two wavs. which we refer to as ‘fairness’ and

33

Axiomatizing Congestion Control

Toward Formally Verifying Congestion Control Behavior

DORON ZARCHY, Hebrew University of Jerusalem
RADHIKA MITTAL, University of Illinois at Urbana-Champaign
MICHAEL SCHAPIRA, Hebrew University of Jerusalem
SCOTT SHENKER, UC Berkeley, ICSI

ABSTRACT

The diversity of paths on the Internet makes it difficult for designers
and operators to confidently deploy new congestion control algo-
rithms (CCAs) without extensive real-world experiments, but such
capabilities are not available to most of the networking commu-
nity. And even when they are available, understanding why a CCA
under-performs by trawling through massive amounts of statistical

The overwhelmingly large design space of congestion control protocols, along with the increasingly diverse
range of appli makes ing such protocols a daunting task. Simulation and experi-
ments are very helpful in evaluating the performance of designs in specific contexts, but give limited insight
into the more general properties of these schemes and provide no information about the inherent limits of
congestion control designs (such as, which properties are ly achievable and which are mutually

. In contrast, traditional theoretical hes are typically focused on the design of protocols that

“mimic

Experimental Evaluation of
BBR Congestion Control

Mario Hock, Roland Bless, Martina Zitterbart
Karlsruhe Institute of Technology
Karlsruhe, Germany
E-Mail: mario.hock@kit.edu, bless@kit.edu, zitterbart @kit.edu

that ne
Ath
utility 1
CCA. 1ty
ity per-
tleneck
erstry
(), the
based d
(1) Ide
asserts
link wi
istoo it
ideal-d Abstract—BBR is a recently proposed congestion control.
high re Instead of using packet loss as congestion signal, like many
that it currently used congestion controls, it uses an estimate of the
at 1 available bottleneck link bandwidth to determine its sending
not eve rate. BBR tries to provide high link utilization while avoiding to
create queues in bottleneck buffers. The original publication of
(2) Thre BBR shows that it can deliver superior performance compared
onhow to CUBICTCP in some environments. This paper provides an
Bhbyfo independent and extensive experimental evaluation of BBR at
Y higher speeds. The experimental setup uses BBR’s Linux kernel
nores o 4.9 implementation and typical data rates of 10Gbit/s and
suchas 1Gbits at the bottleneck link. The experiments vary the flows’
round-trip times, the number of flows, and buffer sizes at the
(2) Ass bottleneck. The evaluation considers throughput, queuing delay,
have s¢ packet loss, and fairness. On the one hand, the intended behavior
the out of BBR could be observed with our experiments. On the other
€ oul hand, some severe inherent issues such as increased queuing
a differ delays, unfairness, and massive packet loss were also detected.
« takes The paper provides an in-depth discussion of BBR’s behavior in
leavesa different experiment setups.
compla 1. INTRODUCTION
not. Jai Congestion control protects the Internet from persistent
to both overload situations. Since its invention and first Internet-wide
Mim introduction congestion control has evolved a lot [1], but is still
replica a topic of ongoing research [10], [15]. In general, congestion
P! i control mechanisms try to determine a suitable amount of
asafw

data to transmit at a certain point in time in order to utilize
the available transmission capacity, but to avoid a persistent
overload of the network. The bottleneck link is fully utilized
if the amount of inflight data D9k matches exactly the
bandwidth delay product bdp = b, - RTT .., where b, is the
available bottleneck data rate (i.c., the smallest data rate along
a network path between two TCP end systems) and RTT s,
is the minimal round-trip time (without any queuing delay).
A fundamental difficulty of congestion control is to calculate
a suitable amount of inflight data without exact knowledge
of the current bdp. Usually, acknowledgments as feedback
help to create estimates for the bdp. If D5 is larger than
bdp, the bottleneck is overloaded, and any excess data is filled
into a buffer at the bottleneck link or dropped if the buffer
capacity is exhausted. If this overload situation persists the
bottleneck becomes congested. If D™/ is smaller than bdp,

to completely fill the available buffer capacity at a bottleneck
link, since most buffers in network devices still apply a tail
drop strategy. A filled buffer implics a large queuing delay
that adversely affects everyone’s performance on the Internet:
the inflicted latency is unncccssan]y high. Tms also highly
impacts (e.g.. Voi

online games), which often have stringent rcqmrcmcms to keep
the one way end-to-end delay below 100ms. Similarly, many
transaction-based applications suffer from high latencies.

sip+
Sokieneck
brmton

sip

E Application Bandwidth kmited @ Buffer

£ inited

4

R ®

2 (0]

5 Bottleneck rate b,

§

:

i

Amount of inflight data DIAight

Fig. 1: Congestion control operating points: delivery rate and
round-trip time vs. amount of inflight data, based on [5]

Recently, BBR was proposed by a team from Google [5]
as new congestion control. It is called “congestion-based”
congestion control in contrast to loss-based or delay-based

control. The diff in their mode
of operation is illustrated in fig. 1 (from [S]), which shows
round-trip time and delivery rate in dependence of D*/%9h¢ for
a single sender at a bottleneck. If the amount of inflight data
Dfisht s just large enough to fill the available bottleneck
link capacity (i.e., D™"9" — bdp), the bottleneck link is fully
utilized and the queuing delay is still zero or close to zero.
This is the optimal operating point (A), because the bottleneck
link is already fully utilized at this point. If the amount of
inflight data is increased any further, the bottleneck buffer gets
filled with the excess data. The delivery rate, however, does not

(e.g., network utility max
tives), as opposed to the ir

ntal and theoretical appro:
trol protocols, which is ins
isider several natural requ
zation, loss-avoidance, fair
can be achieved within a
offs between desiderata, a1
 space of possible outcorr

scols;

ira, and Scott Shenker. 20
cle 33 (June 2019), 33 pag:

of both industrial and
better congestion cont
» (as exemplified by the
4,18, 19, 49, 50]), (ii) the
:ndliness), (iii) the envi
rcial Internet, satellite),
nds, latency- vs. bandw
s simulation and exper
aportant for understan

ssity of Jerusalem, doronz@c
Iu; Michael Schapira, Hebrew
siberkeley.edu.

part of this work for persona
r profit or commercial advar
ymponents of this work own
wise, or republish, to post on
nissions from permissions@z

al. Comput. Syst., Vol. 3, No.

tion Conti

Stability Analysis of Explicit Congestion
Control Protocols

Hamsa Balakrishnan, Nandita Dukkipati, Nick McKeown and Claire J. Tomlin
Stanford University, Stanford, CA 94305
Email: {hamsa, nanditad, nickm, tomlin}@stanford.edu

Abstract

Much recent attention has been devoted to analyzing the stability of congestion control algorithms,
in the context of TCP modifications (e.g., TCP/RED [10], [15], FAST [17]) and new protocols (e.g.,
XCP [21], RCP [8], TeXCP [20]). The control-theoretic framework used in most previous work s linear
systems theory. The analyses assume that the system can be well approximated by linearization, and
the linearization is then used to derive conditions for stability using techniques based on the Bode or
Nyquist criteria.

We show that li

is not a good when the queue lengths are close to zero.
Because the goal of several congestion control algorithms is to keep queue lengths small, the linearization
turns out to be the most inaccurate precisely in the realm in which a good algorithm would hope to
operate. We show, in the context of explicit congestion control protocols like XCP and RCP, that the
stability region derived from traditional Nyquist analysis is not an accurate representation of the actual
stability region. Using XCP as an example, we then show that modeling the congestion control algorithm
as a switched linear control system with time delay, and using new Lyapunov stability conditions can
provide sound and more general sufficient conditions for stability than previously derived. For piecewise
linear systems with time-delay, the proposed conditions guarantee global stability. We show that the
proposed framework can be used to analyze the stability of congestion control protocols in the presence
of heterogeneous delays.

Stanford University Department of Aeronautics and Astronautics Report: SUDAAR No. 776, September 9, 2005. This research
was supported by an NSF Career award (ECS-9985072). H. Balakrishnan was supported by a Stanford Graduate Fellowship.

Venkat Arun’, Mina Tahmasbi Arashloo®, Ahmed Saeed’, Mohammad Alizadeh’, Hari Balakrishnan”
MIT CSAIL and Cornell University
Email: ccac@mit. edu Website: https://projects.csail. mit.edu/ccac

performance (e.g., by giving applications poor ratings or finding
alternatives). Performance matters not only in the mean, but also in
the tail statistics. In response, the research community and industry
have developed numerous innovative methods to improve conges-
tion control, because CCAs determine when packets are sent and
determine transport performance (3, 5, 14, 18, 19, 36, 49, 50, 52, 54].
Akey problem in CCA development is evaluation: how can devel-
~pers, operators, and the networking community gain confidence
n any given proposal? Real-world network paths exhibit a wide
ange of complex behaviors due to token-bucket filters, rate lim-
ters, traffic shapers, network-layer packet schedulers with various
rtifacts, link-layer schedulers that vary link rates, physical-layer
agaries, link-layer acknowledgment (ACK) aggregation, higher-
ayer ACK compression or aggregation, delayed ACKs, and more.
t is impossible even for seasoned engineers to contemplate the
omposition of every “weird” thing that could happen along a path,
auch less model or simulate these behaviors faithfully.

The process of evaluating and gaining confidence with a CCA
oday involves some combination of simulation [1, 2], prototype im-
lementation with tests on a modest number of emulated [13, 26, 39
nd real-world paths [53, 54], and, in some cases, empirical analysis
ia controlled A/B tests at large content providers. Simulations and
mall-scale tests are invaluable in the design and refinement stages,
ut provide little confidence about performance on the trillions of
eal-world paths.

If one has access to servers at a large content provider, then
\/B tests are feasible where a new CCA can be tried on a fraction
f the users to compare its performance with another scheme. If
he measured results of the new CCA compare well, it increases
onfidence in its behavior, but still does not guarantee that it will
ierform well in all scenarios. Moreover, as is likely, the new CCA
ill not perform better in the A/B tests for all users. The aggregate
esults of an A/B test may hide significant weaknesses that arise in
ertain cases. When such cases are identified, understanding the
\ehavior of a CCA requires going a massive data analysis, which
nay be futile because the operator might not have visibility into
he network conditions that led to poor performance. We also note
hat most of the community does not work at a “hyperscaler” with
ccess to such a live-testing infrastructure, yet has good ideas that
eserve serious consideration.

In this paper, we propose initial steps to mitigate these issues.
Ve have developed the Congestion Control Anxiety Controller
CCAC), pronounced “seek-ack” or “see-cack”. CCAC uses formal
erification to prove certain properties of CCAs. With CCAC, a user
an (1) express a CCA in first-order logic, (2) specify hypotheses
bout the CCA for the tool to prove, and (3) test the hypothesis
o the context of the expressed CCA running in a customizable,
uilt-in path model. The user’s ingenuity is useful in expressing the
*CA and using CCAC to propose and iterate on useful hypotheses,
vhile CCAC will prove the hypothesis correct or find insightful

Companies are using new proprietary CCAs
for different applications

* Video streaming anns
e STADIA Nvidia GeForce Now

* Online gaming Steady State at Low Bandwidith
Amazon Luna Google Stadia Nvidia GeForce Now
* Videoconferencing NS —
o] o 11.5] — Eoess Rt 121 — qess Rae
11 111
£15] 2105 21044
S S 10 = 5]
10 ¢4 / {/ 9'2 g
. | | | XcR I I R L 1 L N I IR S
150 200 250 165170175180 185 190 195 120140160180200220240

time (s) time (s) time (s)

D. Caban, D. Ray and S.Seshan. Understanding Congestion Control for Cloud Game Streaming. CMU REU 2

020
November 6, 2024 Reverse-Engineering Congestion Control Algorithm Behavior

CCAs are implemented in thousands of lines
of code in the kernel

Initial outgoing SYN's get put onto the write gueue
t like anything else we transmit. It is not
true data, and if we misinform our callers that
this ACK acks real data, we will erroneously exit
connection startup slow start one packet too
quickly. This is severely frowned upon behavior.

PRI

oy

if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
flag |= FLAG_DATA_ACKED;

} else {
flag |= FLAG_SYN_ACKED;
tp->retrans_stamp = 0;

}

if (!fully_acked)
break;

tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);

next = skb_rb_next(skb);

if (unlikely(skb == tp->retransmit_skb_hint))
tp->retransmit_skb_hint = NULL;

if (unlikely(skb == tp->lost_skb_hint))
tp->lost_skb_hint = NULL;

tcp_highest_sack_replace(sk, skb, next);

tcp_rtx_queue_unlink_and_free(skb, sk);

if (!skb)
tcp_chrono_stop(sk, TCP_CHRONO_BUSY);

if (likely(between(tp->snd_up, prior_snd_una,
tp->snd_up = tp->snd_una;

tp->snd_una)))

if (skb) {
tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
flag |= FLAG_SACK_RENEGING;

if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
seq_rtt _us = tcp_stamp_us_delta(tp->tcp_mstamp, first ackt);
ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);

if (pkts_acked == 1 && last_in_flight < tp->mss_cache &&
last_in flight && !prior_sacked && fully acked &&
sack->rate->prior_delivered + 1 == tp->delivered &&

!(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
/* Conservatively mark a delayed ACK. It's typically
* from a lone runt packet over the round trip to
* a receiver w/o out-of-order or CE events.
*/
flag |= FLAG_ACK_MAYBE_DELAYED;
}

}

if (sack->first_sackt) {
sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);

rtt_update = tcp_ack_update_rtt(sk, flag, seq rtt us, sack rtt_us,
ca_rtt_us, sack->rate);

if (flag & FLAG_ACKED)
lag |= FLAG_SET_XMIT TIMER; /* set TLP or RTO timer */
if (unlikely(icsk->icsk_mtup.probe size &&
tafter (tp->mtu_probe.probe_seq_end, tp->snd_una))) {
tcp_mtup_probe_success (sk);
}

if (tep_is_reno(tp)) {
tcp_remove_reno_sacks (sk, pkts_acked, ece_ack);

/* If any of the cumulatively ACKed segments was
* retransmitted, non-SACK case cannot confirm that

November 6, 2024

* lack of TCPCB_SACKED ACKED bits even if some of
* the packets may have been never retransmitted.
L7
if (flag & FLAG_RETRANS_DATA_ACKED)
flag &= ~FLAG_ORIG_SACK_ ACKED;
} else {
int delta;

/* Non-retransmitted hole got filled? That's reordering
if (before(reord, prior fack))
tcp_check_sack_reordering(sk, reord, 0);

delta = prior_sacked - tp->sacked_out;
tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);

}
} else if (skb && rtt_update && sack _rtt_us >= 0 &&
sack_rtt_us > tcp_stamp us_delta(tp->tcp_mstamp,
tcp_skb_timestamp_us(skb)))
/* Do not re-arm RTO if the sack RTT is measured from data sent
* after when the head was last (re)transmitted. Otherwise the
* timeout may continue to extend in loss recovery.
*
flag |= FLAG_SET_XMIT TIMER; /* set TLP or RTO timer */
}

if (icsk->icsk_ca_ops->pkts_acked) {

struct ack_sample sample = { .pkts_. acked pkts_acked,
.rtt_us = sack->rate->rtt_us,
.in_flight = last_in flight };
icsk->icsk_ca_ops->pkts_acked(sk, &sample);
}

#if FASTRETRANS_DEBUG > 0

#endif

}

WARN_ON ((int)tp->sacked_out < 0);
WARN_ON((int)tp->lost_out < 0);
WARN_ON((int)tp->retrans_out < 0);
if (!tp->packets_out && tcp_is_sack(tp)) {
icsk = inet_csk(sk);
if (tp->lost_out) {
pr_debug(

Leak l=%u %d\n",

tp->lost_out, icsk->icsk_ca_state);
tp->lost_out = 0;

}

if (tp->sacked_out) {
pr_debug('Leak s=%u %d\n",

tp->sacked_out, icsk->icsk_ca_state);

tp->sacked_out = 0;

}
if (tp->retrans_out) {
pr_debug(ak r=%u %d\n",
tp->retrans_out,
tp->retrans_out = 0;

icsk->icsk_ca_state);

return flag;

static void tcp_ack_probe(struct sock *sk)

{

struct inet_connection_sock *icsk = inet_csk(sk);
struct sk_buff *head = tcp_send_head(sk);
const struct tcp_sock *tp = tcp_sk(sk);

/* Was it a usable window open? */
if ('head)
return;
if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
icsk->icsk_backoff = 0;
icsk->icsk_probes_tstamp = 0;
inet_csk_clear_xmit_timer(sk, ICSK_TIME_ PROBEO);
/* Socket must be waked up by subsequent tcp data snd check().
* This function is not for random using!
*/

} else {
unsigned long when = tcp_probe0O_when(sk, TCP_RTO_MAX);

when = tcp_clamp_probeO_to_user_timeout(sk, when);
tcp_reset_xmit_timer(sk, ICSK_TIME PROBEO, when, TCP_RTO_MAX);

}

static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
}

/* Decide wheather to run the increase function of congestion control. */
static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
{

/* If reordering is high then always grow cwnd whenever data is

* delivered regardless of its ordering. Otherwise stay conservative
and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
new SACK or ECE mark may first advance cwnd here and later reduce
* cwnd in tcp fastretrans_alert() based on more states.
*/
if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)

return flag & FLAG_FORWARD_PROGRESS;

return flag & FLAG_DATA_ACKED;

/* The "ultimate" congestion control function that aims to replace the rigid
* cwnd increase and decrease control (tcp cong avoid,tcp *cwnd reduction).
It's called toward the end of processing an ACK with precise rate
* information. All transmission or retransmission are delayed afterwards.
*/
static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,

int flag, const struct rate_sample *rs)

*

{
const struct inet_connection_sock *icsk = inet_csk(sk);
if (icsk->icsk_ca_ops->cong_control) {
icsk->icsk_ca_ops->cong_control(sk, rs);
return;

}

if (tcp_in_cwnd_reduction(sk)) {
/* Reduce cwnd if state mandates */
tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag);
} else if (tcp_may_raise_cwnd(sk, flag)) {
/* Advance cwnd if state allows */
tcp_cong_avoid(sk, ack, acked_sacked);

}
tcp_update_pacing_rate(sk);
}

/* Check that window update is acceptable.
* The function assumes that snd una<=ack<=snd next.
*/
static inline bool tcp_may_update_window(const struct tcp_sock *tp,
const u32 ack, const u32 ack_seq,
const u32 nwin)

{
return after(ack, tp->snd_una) ||
after (ack_seq, tp->snd_wll) ||
(ack_seq == tp->snd_wll && nwin > tp->snd_wnd);
}

/* If we update tp->snd una, also update tp->bytes _acked */
static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
{

u32 delta = ack - tp->snd_una;

sock_owned_by_me((struct sock *)tp);
tp->bytes_acked += delta;

Reverse-Engineering Congestion Control Algorithm Behavior

}

b yeee_seeeaven
WRITE, ONCE (tp->rev_nxt, seq):

/* Update our send window.

static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,

{

}

static bool

{

*

N

W

u32 ack_seq)

struct tep_sock *tp =
int flag = 0;
u32 nwin = ntohs(tcp_hdr(skb)->window);

tep_sk(sk);

if (likely(!tcp_hdr(skb)->syn))
nwin <<= tp->rx_opt.snd_wscale;

if (tcp_may_update_window(tp, ack, ack_seq, mwin)) {
flag |= FLAG_WIN_UPDATE;
tcp_update_wl(tp, ack_seq);

if (tp->snd_wnd nwin) {
tp->snd_wnd = nwin;

/* Note, it is the only place, where

* fast path is recovered for sending TCP.
tp->pred_flags = 0;
tcp_fast_path_check(sk);

if (ltep_write_queue_empty(sk))
tcp_slow_start_after_idle_check(sk);

if (nwin > tp->max_window) {
tp->max_window = nwin;

tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);

}

tep_snd_una_update(tp, ack);

return flag;

__tcp_oow_rate_limited(struct net *net, int mib_idx,
u32 *last_oow_ack_time)

if (*last_oow_ack_time) {
s32 elapsed = (s32) (tcp_jiffies32 - *last_oow_ack_time);

if (0 <= elapsed & elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit)

NET_INC_STATS (net, mib_idx);
return true; /* rate-1i

ed: don't send yet!
}
*last_oow_ack_time = tcp_jiffies32;

return false; /* not rate-limited: go ahead, send dupack now!

Return true if we're currently rate-limiting out-of-window ACKs and
thus shouldn't send a dupack right now. We rate-limit dupacks in
response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
attacks that send repeated SYNs or ACKs for the same connection. To
do this, we do not send a duplicate SYNACK or ACK if the remote
endpoint is sending out-of-window SYNs or pure ACKs at a high rate.

bool tcp_oow_rate lxmxted(struct net *net, const struct sk_buff *skb,

{

nt mib_idx, u32 *last_oow_ack tim)

/* Data packets without SYNs are not likely part of an ACK loop.
if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
Itcp_hdr (skb)->syn)

ndow update algorithm, described in RFC793/RFC1122 (used in linux-2.2
and in FreeBSD. NetBSD's one is even worse.) is wrong.
/

*/

*/

{

When we cannot observe CCA behavior from
the implementation, we can use packet traces

-

2.5 5.0 75 100 125 15.0
Time (s)

—
)
I

—
S
L

e
o0

<
o
1

in flight (Mbit)

<
=
1

<
b
1

<
o

November 6, 2024 Reverse-Engineering Congestion Control Algorithm Behavior

One way to uncover CCAs in the wild:

Classification

Queue Occupancy

R Ware, A A Philip, N Hungria, Y Kothari, J Sherry, and S Seshan. CCAnalyzer: An Efficient and Nearly-Passive Congestion Control Classifier. In SIGCOMM 2024.
Ayush Mishra, Lakshay Rastogi, Raj Joshi, and Ben Leong. Keeping an Eye on Congestion Control in the Wild with Nebby. In SIGCOMM 2024.

November 6, 2024

100 -
50 1

0+

100

50 -

- bbr
— reno
[M,
- cubic — bic
0 25 50 0 25 50
Time (s)

labeled time series

Reverse-Engineering Congestion Control Algorithm Behavior

One way to uncover CCAs in the wild:

Classification

Queue Occupancy

R Ware, A A Philip, N Hungria, Y Kothari, J Sherry, and S Seshan. CCAnalyzer: An Efficient and Nearly-Passive Congestion Control Classifier. In SIGCOMM 2024.
Ayush Mishra, Lakshay Rastogi, Raj Joshi, and Ben Leong. Keeping an Eye on Congestion Control in the Wild with Nebby. In SIGCOMM 2024.

November 6, 2024

100 -
50 1

0+

100

50 -

- bbr
- reno
— classifier
] train
- cubic bic
0 25 50 0 25 50
Time (s)

labeled time series

Reverse-Engineering Congestion Control Algorithm Behavior

One way to uncover CCAs in the wild:

Classification

Queue Occupancy

R Ware, A A Philip, N Hungria, Y Kothari, J Sherry, and S Seshan. CCAnalyzer: An Efficient and Nearly-Passive Congestion Control Classifier. In SIGCOMM 2024.
Ayush Mishra, Lakshay Rastogi, Raj Joshi, and Ben Leong. Keeping an Eye on Congestion Control in the Wild with Nebby. In SIGCOMM 2024.

November 6, 2024

100 -
50 1

0+

100

50 -

- bbr
- reno
— classifier
] train
- cubic bic
0 25 50 0 25 50
Time (s)
labeled time series
100
50
01 . :
0 10 20 30 40 50 60

Time (s)

unlabeled time series

Reverse-Engineering Congestion Control Algorithm Behavior

One way to uncover CCAs in the wild:

Classification

100 - 1 - bbr
>
g 50
8 — reno
B 03
O
O
g 100
]
-}
o 50 - 1
- cubic bic
0 25 50 _. 0 25 50
Time (s)

labeled time series

predicted
. label
— classifier —
train : or
classify . .,
unknown
100
50
01
0 10 20 30 40 50 60

Time (s)

unlabeled time series

R Ware, A A Philip, N Hungria, Y Kothari, J Sherry, and S Seshan. CCAnalyzer: An Efficient and Nearly-Passive Congestion Control Classifier. In SIGCOMM 2024.
Ayush Mishra, Lakshay Rastogi, Raj Joshi, and Ben Leong. Keeping an Eye on Congestion Control in the Wild with Nebby. In SIGCOMM 2024.

November 6, 2024

Reverse-Engineering Congestion Control Algorithm Behavior

One way to uncover CCAs in the wild:
Classification

Queue Occupancy

100 -
50 1

0+

100

50 -

- bbr
- reno .
predicted
. label
— classifier — -
| clossi
-~ cubic bic
0 25 50 0 25 50
Time (s)
labeled time series
100
50
01
0 10 20 30 40 50 60

Time (s)

unlabeled time series

R Ware, A A Philip, N Hungria, Y Kothari, J Sherry, and S Seshan. CCAnalyzer: An Efficient and Nearly-Passive Congestion Control Classifier. In SIGCOMM 2024.
Ayush Mishra, Lakshay Rastogi, Raj Joshi, and Ben Leong. Keeping an Eye on Congestion Control in the Wild with Nebby. In SIGCOMM 2024.

November 6, 2024

Reverse-Engineering Congestion Control Algorithm Behavior

One way to uncover CCAs in the wild:
Classification

100
g 50
g o predicted
g 100 - label
g 50 1 .
0% What if the CCA is truly new? .@

Can we say more?

0 10 20 30 40 50 60
Time (s)
unlabeled time series

R Ware, A A Philip, N Hungria, Y Kothari, J Sherry, and S Seshan. CCAnalyzer: An Efficient and Nearly-Passive Congestion Control Classifier. In SIGCOMM 2024.
Ayush Mishra, Lakshay Rastogi, Raj Joshi, and Ben Leong. Keeping an Eye on Congestion Control in the Wild with Nebby. In SIGCOMM 2024.

November 6, 2024 Reverse-Engineering Congestion Control Algorithm Behavior

Generate simple implementations of CCAs
from packet traces showing their behavior

November 6, 2024 Reverse-Engineering Congestion Control Algorithm Behavior 16

Generate simple implementations of CCAs
from packet traces showing their behavior

v ease the analysis of known CCAs

November 6, 2024 Reverse-Engineering Congestion Control Algorithm Behavior 17

Generate simple implementations of CCAs
from packet traces showing their behavior

v ease the analysis of known CCAs

v enable the analysis of unknown CCAs

November 6, 2024 Reverse-Engineering Congestion Control Algorithm Behavior 18

Abagnale uses program synthesis to reverse
engineer CCAs

hacke! Synthesizer CCA

November 6, 2024 Reverse-Engineering Congestion Control Algorithm Behavior

Most congestion control code is boilerplate

.tcp_;ate_skb_danvared(sk, ' skb, sack->rate);

/* Initial outgoing SYN's get put onto the write gueue
* just like anything else we transmit. It is not
* true data, and if we misinform our callers that
* this ACK acks real data, we will erroneously exit
* connection startup slow start one packet too
* quickly. This is severely frowned upon behavior.
oy
if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
flag |= FLAG_DATA_ACKED;
} else {
flag |= FLAG_SYN_ACKED;
tp->retrans_stamp = 0;
}

if (!fully_acked)
break;

tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);

next = skb_rb_next(skb);

if (unlikely(skb == tp->retransmit_skb_hint))
tp->retransmit_skb_hint = NULL;

if (unlikely(skb == tp->lost_skb_hint))
tp->lost_skb_hint = NULL;

tcp_highest_sack_replace(sk, skb, next);

tcp_rtx_queue_unlink_and_free(skb, sk);

if (!skb)
tcp_chrono_stop(sk, TCP_CHRONO_BUSY);

if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
tp->snd_up = tp->snd_una;

if (skb) {
tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)

flag |= FLAG_SACK_RENEGING;

if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
seq rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);

if (pkts_acked == 1 && last_in_flight < tp->mss_cache &&
last_in flight && !prior_sacked && fully acked &&
sack->rate->prior_delivered + 1 == tp->delivered &&

!(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
/* Conservatively mark a delayed ACK. It's typically
* from a lone runt packet over the round trip to
* a receiver w/o out-of-order or CE events.
*/
flag |- FLAG_ACK_MAYBE_DELAYED;
}

}

if (sack->first_sackt) {
sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);

rtt_update = tcp_ack_update_rtt(sk, flag, seq rtt us, sack rtt_us,
ca_rtt_us, sack->rate);

if (flag & FLAG_ACKED)
flag |= FLAG_SET_XMIT TIMER; /* set TLP or RTO timer */
if (unlikely(icsk->icsk_mtup.probe size &&
tafter (tp->mtu_probe.probe_seq_end, tp->snd_una))) {
tcp_mtup_probe_success (sk);
}

if (tep_is_reno(tp)) {
tcp_remove_reno_sacks (sk, pkts_acked, ece_ack);

/* If any of the cumulatively ACKed segments was
* retransmitted, non-SACK case cannot confirm that

November 6, 2024

* progress was due to original transmission due to
* lack of TCPCB_SACKED ACKED bits even if some of
* the packets may have been never retransmitted.
L7

if (flag & FLAG_RETRANS_DATA_ACKED)

flag &= ~FLAG_ORIG_SACK_ACKED;
} else {
int delta;

/* Non-retransmitted hole got filled? That's reordering
if (before(reord, prior fack))
tcp_check_sack_reordering(sk, reord, 0);

delta = prior_sacked - tp->sacked_out;
tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);

}
} else if (skb && rtt_update && sack _rtt_us >= 0 &&
sack_rtt_us > tcp_stamp us_delta(tp->tcp_mstamp,
tcp_skb_timestamp_us(skb)))
/* Do not re-arm RTO if the sack RTT is measured from data sent
* after when the head was last (re)transmitted. Otherwise the
* timeout may continue to extend in loss recovery.

*
flag |= FLAG_SET_XMIT TIMER; /* set TLP or RTO timer */
}

if (icsk->icsk_ca_ops->pkts_acked) {
struct ack_sample sample = { .pkts_acked = pkts_acked,
.rtt_us = sack->rate->rtt_us,
.in_flight = last_in flight };

icsk->icsk_ca_ops->pkts_acked(sk, &sample);
}

#1if FASTRETRANS_DEBUG > 0
WARN_ON ((int)tp->sacked_out < 0);
WARN_ON((int)tp->lost_out < 0);
WARN_ON((int)tp->retrans_out < 0);
if (!tp->packets_out && tcp_is_sack(tp)) {
icsk = inet_csk(sk);
if (tp->lost_out) {
pr_debug("Leak 1=%u %d\n",
tp->lost_out, icsk->icsk_ca_state);
tp->lost_out = 0;
}
if (tp->sacked_out) {
pr_debug('Leak s=%u %d\n",
tp->sacked_out, icsk->icsk_ca_state);
tp->sacked_out = 0;

}
if (tp->retrans_out) {
pr_debug('Leak r=%u %d\n",
tp->retrans_out, icsk->icsk_ca_state);
tp->retrans_out = 0;

#endif
return flag;

}

static void tcp_ack_probe(struct sock *sk)

{
struct inet_connection_sock *icsk = inet_csk(sk);
struct sk_buff *head = tcp_send_head(sk);
const struct tcp_sock *tp = tcp_sk(sk);

/* Was it a usable window open? */
if ('head)
return;
if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
icsk->icsk_backoff = 0;
icsk->icsk_probes_tstamp = 0;
inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBEO);
/* Socket must be waked up by subsequent tcp data snd check().

* This function is not for random using!
*/

} else {
unsigned long when = tcp_probe0O_when(sk, TCP_RTO_MAX);

when = tcp_clamp_probeO_to_user_timeout(sk, when);
tcp_reset_xmit_timer(sk, ICSK_TIME PROBEO, when, TCP_RTO_MAX);

}
static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)

return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
inet_csk(sk)->icsk_ca_state != TCP_CA_Open;

}

/* Decide wheather to run the increase function of congestion control. */
static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
{

/

If reordering is high then always grow cwnd whenever data is
delivered regardless of its ordering. Otherwise stay conservative
and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
new SACK or ECE mark may first advance cwnd here and later reduce

* cwnd in tcp fastretrans_alert() based on more states.

*/

if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
return flag & FLAG_FORWARD_PROGRESS;

*

return flag & FLAG_DATA_ACKED;

/* The "ultimate" congestion control function that aims to replace the rigid
cwnd increase and decrease control (tcp cong avoid,tcp *cwnd reduction).
It's called toward the end of processing an ACK with precise rate
information. All transmission or retransmission are delayed afterwards.

EER

static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
int flag, const struct rate_sample *rs)
{

const struct inet_connection_sock *icsk = inet_csk(sk);

if (icsk->icsk_ca_ops->cong_control) {
icsk->icsk_ca_ops->cong_control(sk, rs);
return;

}

if (tcp_in_cwnd_reduction(sk)) {
* Reduce cwnd if state mandates */
tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag);
} else if (tcp_may_raise_cwnd(sk, flag)) {
/* Advance cwnd if state allows */
tcp_cong_avoid(sk, ack, acked_sacked);

}
tcp_update_pacing_rate(sk);
}

/* Check that window update is acceptable.
* The function assumes that snd una<=ack<=snd next.
*/
static inline bool tcp_may_update_window(const struct tcp_sock *tp,
const u32 ack, const u32 ack_seq,
const u32 nwin)

{
return after(ack, tp->snd_una) ||
after (ack_seq, tp->snd_wll) ||
(ack_seq == tp->snd_wll && nwin > tp->snd_wnd);
}

/* If we update tp->snd una, also update tp->bytes _acked */
static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
{

u32 delta = ack - tp->snd_una;

sock_owned_by_me((struct sock *)tp);
tp->bytes_acked += delta;

Reverse-Engineering Congestion Control Algorithm Behavior

Cp o mpies_ssveaves o seave,
WRITE_ONCE (tp->rev_nxt, seq);
}

/* Update our send window.

* Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
* and in FreeBSD. NetBSD's one is even worse.) is wrong.
*/
static int tcp_ack update window(struct sock *sk, const struct sk_buff *skb, u32 ack,
u32 ack_seq)
{
struct tep_sock *tp = tcp_sk(sk);
int flag = 0;
u32 nwin = ntohs(tcp_hdr (skb)->window);

if (likely(!tcp_hdr(skb)->syn))
nwin <<= tp->rx_opt.snd_wscale;

if (tcp_may_update_window(tp, ack, ack_seq, mwin)) {
flag |= FLAG_WIN_UPDATE;
tcp_update_wl(tp, ack_seq);

if (tp->snd_wnd nwin) {
tp->snd_wnd = nwin;

/* Note, it is the only place, where
* fast path is recovered for sending TCP.
*/
tp->pred_flags = 0;
tcp_fast_path_check(sk);

if (ltep_write_queue_empty(sk))
tcp_slow_start_after_idle_check(sk);

if (nwin > tp->max_window) {
tp->max_window = nwin;
tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);

}

tcp_snd_una_update(tp, ack);

return flag;

}

static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
u32 *last_oow_ack_time)
{
if (*last_oow_ack_time) {
s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);

if (0 <= elapsed & elapsed < net->ipv4.sysctl tcp_invalid_ratelimit)
NET_INC_STATS (net, mib_idx);
return true; /* rate-limited: don't send yet! */

}

*last_oow_ack_time = tcp_jiffies32;

return false; /* not rate-limited: go ahead, send dupack now! */

N

N

Return true if we're currently rate-limiting out-of-window ACKs and
thus shouldn't send a dupack right now. We rate-limit dupacks in
response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
attacks that send repeated SYNs or ACKs for the same connection. To
do this, we do not send a duplicate SYNACK or ACK if the remote
endpoint is sending out-of-window SYNs or pure ACKs at a high rate.

bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
int mib_idx, u32 *last_oow_ack_time)
{
/* Data packets without SYNs are not likely part of an ACK loop. */
if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
Itcp_hdr (skb)->syn)

{

Most congestion control code is boilerplate

.tcp_;ate_skb_danvared(sk, ' skb, sack->rate);

/* Initial outgoing SYN's get put onto the write gueue
* just like anything else we transmit. It is not
* true data, and if we misinform our callers that
* this ACK acks real data, we will erroneously exit
* connection startup slow start one packet too
* quickly. This is severely frowned upon behavior.
oy
if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
flag |= FLAG_DATA_ACKED;
} else {
flag |= FLAG_SYN_ACKED;
tp->retrans_stamp = 0;
}

if (!fully_acked)
break;

tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);

next = skb_rb_next(skb);

if (unlikely(skb == tp->retransmit_skb_hint))
tp->retransmit_skb_hint = NULL;

if (unlikely(skb == tp->lost_skb_hint))
tp->lost_skb_hint = NULL;

tcp_highest_sack_replace(sk, skb, next);

tcp_rtx_queue_unlink_and_free(skb, sk);

if (!skb)
tcp_chrono_stop(sk, TCP_CHRONO_BUSY);

if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
tp->snd_up = tp->snd_una;

if (skb) {
tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)

flag |= FLAG_SACK_RENEGING;

if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
seq rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);

if (pkts_acked == 1 && last_in_flight < tp->mss_cache &&
last_in flight && !prior_sacked && fully acked &&
sack->rate->prior_delivered + 1 == tp->delivered &&

!(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
/* Conservatively mark a delayed ACK. It's typically
* from a lone runt packet over the round trip to
* a receiver w/o out-of-order or CE events.
*/
flag |- FLAG_ACK_MAYBE_DELAYED;
}

}

if (sack->first_sackt) {
sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);

rtt_update = tcp_ack_update_rtt(sk, flag, seq rtt us, sack rtt_us,
ca_rtt_us, sack->rate);

if (flag & FLAG_ACKED)
flag |= FLAG_SET_XMIT TIMER; /* set TLP or RTO timer */
if (unlikely(icsk->icsk_mtup.probe size &&
tafter (tp->mtu_probe.probe_seq_end, tp->snd_una))) {
tcp_mtup_probe_success (sk);
}

if (tep_is_reno(tp)) {
tcp_remove_reno_sacks (sk, pkts_acked, ece_ack);

/* If any of the cumulatively ACKed segments was
* retransmitted, non-SACK case cannot confirm that

November 6, 2024

* progress was due to original transmission due to
* lack of TCPCB_SACKED ACKED bits even if some of
* the packets may have been never retransmitted.
L7

if (flag & FLAG_RETRANS_DATA_ACKED)

flag &= ~FLAG_ORIG_SACK_ACKED;
} else {
int delta;

/* Non-retransmitted hole got filled? That's reordering
if (before(reord, prior fack))
tcp_check_sack_reordering(sk, reord, 0);

delta = prior_sacked - tp->sacked_out;
tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);

}
} else if (skb && rtt_update && sack _rtt_us >= 0 &&
sack_rtt_us > tcp_stamp us_delta(tp->tcp_mstamp,
tcp_skb_timestamp_us(skb)))
/* Do not re-arm RTO if the sack RTT is measured from data sent
* after when the head was last (re)transmitted. Otherwise the
* timeout may continue to extend in loss recovery.

*
flag |= FLAG_SET_XMIT TIMER; /* set TLP or RTO timer */
}

if (icsk->icsk_ca_ops->pkts_acked) {
struct ack_sample sample = { .pkts_acked = pkts_acked,
.rtt_us = sack->rate->rtt_us,
.in_flight = last_in flight };

icsk->icsk_ca_ops->pkts_acked(sk, &sample);
}

#1if FASTRETRANS_DEBUG > 0
WARN_ON ((int)tp->sacked_out < 0);
WARN_ON((int)tp->lost_out < 0);
WARN_ON((int)tp->retrans_out < 0);
if (!tp->packets_out && tcp_is_sack(tp)) {
icsk = inet_csk(sk);
if (tp->lost_out) {
pr_debug("Leak 1=%u %d\n",
tp->lost_out, icsk->icsk_ca_state);
tp->lost_out = 0;
}
if (tp->sacked_out) {
pr_debug('Leak s=%u %d\n",
tp->sacked_out, icsk->icsk_ca_state);
tp->sacked_out = 0;

}
if (tp->retrans_out) {
pr_debug('Leak r=%u %d\n",
tp->retrans_out, icsk->icsk_ca_state);
tp->retrans_out = 0;

#endif
return flag;

}

static void tcp_ack_probe(struct sock *sk)

{
struct inet_connection_sock *icsk = inet_csk(sk);
struct sk_buff *head = tcp_send_head(sk);
const struct tcp_sock *tp = tcp_sk(sk);

/* Was it a usable window open? */
if ('head)
return;
if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
icsk->icsk_backoff = 0;
icsk->icsk_probes_tstamp = 0;
inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBEO);
/* Socket must be waked up by subsequent tcp data snd check().

* This function is not for random using!
*/

} else {
unsigned long when = tcp_probe0O_when(sk, TCP_RTO_MAX);

when = tcp_clamp_probeO_to_user_timeout(sk, when);
tcp_reset_xmit_timer(sk, ICSK_TIME PROBEO, when, TCP_RTO_MAX);

}
static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)

return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
inet_csk(sk)->icsk_ca_state != TCP_CA_Open;

}

/* Decide wheather to run the increase function of congestion control. */
static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
{

/

If reordering is high then always grow cwnd whenever data is
delivered regardless of its ordering. Otherwise stay conservative
and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
new SACK or ECE mark may first advance cwnd here and later reduce

* cwnd in tcp fastretrans_alert() based on more states.

*/

if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
return flag & FLAG_FORWARD_PROGRESS;

*

return flag & FLAG_DATA_ACKED;

I/* The "ultimate" congestion control function that aims to replace the rigid
cwnd increase and decrease control (tcp cong avoid,tcp *cwnd reduction).
It's called toward the end of processing an ACK with precise rate
information. All transmission or retransmission are delayed afterwards.

EER

static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
int flag, const struct rate_sample *rs)
{

const struct inet_connection_sock *icsk = inet_csk(sk);

if (icsk->icsk_ca_ops->cong_control) {
icsk->icsk_ca_ops->cong_control(sk, rs);
return;

}

if (tcp_in_cwnd_reduction(sk)) {
* Reduce cwnd if state mandates */
tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag);
} else if (tcp_may_raise_cwnd(sk, flag)) {
/* Advance cwnd if state allows */
tcp_cong_avoid(sk, ack, acked_sacked);

}
tcp_update_pacing_rate(sk);

/* Check that window update is acceptable.
* The function assumes that snd una<=ack<=snd next.
*/
static inline bool tcp_may_update_window(const struct tcp_sock *tp,
const u32 ack, const u32 ack_seq,
const u32 nwin)

{
return after(ack, tp->snd_una) ||
after (ack_seq, tp->snd_wll) ||
(ack_seq == tp->snd_wll && nwin > tp->snd_wnd);
}

/* If we update tp->snd una, also update tp->bytes _acked */
static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
{

u32 delta = ack - tp->snd_una;

sock_owned_by_me((struct sock *)tp);
tp->bytes_acked += delta;

Reverse-Engineering Congestion Control Algorithm Behavior

Cp o mpies_ssveaves o seave,
WRITE_ONCE (tp->rev_nxt, seq);
}

/* Update our send window.

* Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
* and in FreeBSD. NetBSD's one is even worse.) is wrong.
*/
static int tcp_ack update window(struct sock *sk, const struct sk_buff *skb, u32 ack,
u32 ack_seq)
{
struct tep_sock *tp = tcp_sk(sk);
int flag = 0;
u32 nwin = ntohs(tcp_hdr (skb)->window);

if (likely(!tcp_hdr(skb)->syn))
nwin <<= tp->rx_opt.snd_wscale;

if (tcp_may_update_window(tp, ack, ack_seq, mwin)) {
flag |= FLAG_WIN_UPDATE;
tcp_update_wl(tp, ack_seq);

if (tp->snd_wnd nwin) {
tp->snd_wnd = nwin;

/* Note, it is the only place, where
* fast path is recovered for sending TCP.
*/
tp->pred_flags = 0;
tcp_fast_path_check(sk);

if (ltep_write_queue_empty(sk))
tcp_slow_start_after_idle_check(sk);

if (nwin > tp->max_window) {
tp->max_window = nwin;
tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);

}

tcp_snd_una_update(tp, ack);

return flag;

}

static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
u32 *last_oow_ack_time)
{
if (*last_oow_ack_time) {
s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);

if (0 <= elapsed & elapsed < net->ipv4.sysctl tcp_invalid_ratelimit)
NET_INC_STATS (net, mib_idx);
return true; /* rate-limited: don't send yet! */

}

*last_oow_ack_time = tcp_jiffies32;

return false; /* not rate-limited: go ahead, send dupack now! */

N

N

Return true if we're currently rate-limiting out-of-window ACKs and
thus shouldn't send a dupack right now. We rate-limit dupacks in
response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
attacks that send repeated SYNs or ACKs for the same connection. To
do this, we do not send a duplicate SYNACK or ACK if the remote
endpoint is sending out-of-window SYNs or pure ACKs at a high rate.

bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
int mib_idx, u32 *last_oow_ack_time)
{
/* Data packets without SYNs are not likely part of an ACK loop. */
if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
Itcp_hdr (skb)->syn)

{

Most congestion control code is boilerplate

;.cp_;ate_skb_danvared(sk, ' skb, sack->rate);

/* Initial outgoing SYN's get put onto the write_gueue
* t like anything else we transmit. It is not
* true data, and if we misinform our callers that
* this ACK acks real data, we will erroneously exit
*
*

connection startup slow start one packet too
quickly. This is severely frowned upon behavior.
oy
if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
flag |= FLAG_DATA_ACKED;
} else {
flag |= FLAG_SYN_ACKED;
tp->retrans_stamp = 0;
}

if (!fully_acked)
break;

tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);

next = skb_rb_next(skb);

if (unlikely(skb == tp->retransmit_skb_hint))
tp->retransmit_skb_hint = NULL;

if (unlikely(skb == tp->lost_skb_hint))
tp->lost_skb_hint = NULL;

tcp_highest_sack_replace(sk, skb, next);

tcp_rtx_queue_unlink_and_free(skb, sk);

if (!skb)
tcp_chrono_stop(sk, TCP_CHRONO_BUSY);

if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
tp->snd_up = tp->snd_una;

if (skb) {
tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
flag |= FLAG_SACK_RENEGING;

if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
seq_rtt _us = tcp_stamp_us_delta(tp->tcp_mstamp, first ackt);
ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);

if (pkts_acked == 1 && last_in_flight < tp->mss_cache &&
last_in flight && !prior_sacked && fully acked &&
sack->rate->prior_delivered + 1 == tp->delivered &&

!(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
/* Conservatively mark a delayed ACK. It's typically
* from a lone runt packet over the round trip to
* a receiver w/o out-of-order or CE events.
*/
flag |= FLAG_ACK_MAYBE_DELAYED;
}

}

if (sack->first_sackt) {
sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);

rtt_update = tcp_ack_update_rtt(sk, flag, seq rtt us, sack rtt_us,
ca_rtt_us, sack->rate);

if (flag & FLAG_ACKED)
flag |= FLAG_SET_XMIT TIMER; /* set TLP or RTO timer */
if (unlikely(icsk->icsk_mtup.probe size &&
tafter (tp->mtu_probe.probe_seq_end, tp->snd_una))) {
tcp_mtup_probe_success (sk);
}

if (tep_is_reno(tp)) {
tcp_remove_reno_sacks (sk, pkts_acked, ece_ack);

/* If any of the cumulatively ACKed segments was
* retransmitted, non-SACK case cannot confirm that

November 6, 2024

* progress was due to original transmission due to
* lack of TCPCB_SACKED ACKED bits even if some of
* the packets may have been never retransmitted.
L7

if (flag & FLAG_RETRANS_DATA_ACKED)

flag &= ~FLAG_ORIG_SACK_ ACKED;
} else {
int delta;

/* Non-retransmitted hole got filled? That's reordering
if (before(reord, prior fack))
tcp_check_sack_reordering(sk, reord, 0);

delta = prior_sacked - tp->sacked_out;
tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);

}
} else if (skb && rtt_update && sack _rtt_us >= 0 &&
sack_rtt_us > tcp_stamp us_delta(tp->tcp_mstamp,
tcp_skb_timestamp_us(skb)))
/* Do not re-arm RTO if the sack RTT is measured from data sent
* after when the head was last (re)transmitted. Otherwise the
* timeout may continue to extend in loss recovery.

*
flag |= FLAG_SET_XMIT TIMER; /* set TLP or RTO timer */
}

if (icsk->icsk_ca_ops->pkts_acked) {
struct ack_sample sample = { .pkts_acked = pkts_acked,
.rtt_us = sack->rate->rtt_us,
.in_flight = last_in flight };

icsk->icsk_ca_ops->pkts_acked(sk, &sample);
}

#if FASTRETRANS_DEBUG > 0
WARN_ON ((int)tp->sacked_out < 0);
WARN_ON((int)tp->lost_out < 0);
WARN_ON((int)tp->retrans_out < 0);
if (!tp->packets_out && tcp_is_sack(tp)) {
icsk = inet_csk(sk);
if (tp->lost_out) {
pr_debug(

Leak l=%u %d\n",

tp->lost_out, icsk->icsk_ca_state);
tp->lost_out = 0;

}

if (tp->sacked_out) {
pr_debug('Leak s=%u %d\n",

tp->sacked_out, icsk->icsk_ca_state);

tp->sacked_out = 0;

}
if (tp->retrans_out) {
pr_debug(ak r=%u %d\n",
tp->retrans_out, icsk->icsk_ca_state);
tp->retrans_out = 0;

#endif
return flag;

}

static void tcp_ack_probe(struct sock *sk)

{
struct inet_connection_sock *icsk = inet_csk(sk);
struct sk_buff *head = tcp_send_head(sk);
const struct tcp_sock *tp = tcp_sk(sk);

/* Was it a usable window open? */
if ('head)
return;
if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
icsk->icsk_backoff = 0;
icsk->icsk_probes_tstamp = 0;
inet_csk_clear_xmit_timer(sk, ICSK_TIME_ PROBEO);
/* Socket must be waked up by subsequent tcp data snd check().
* This function is not for random using!
*/

} else {
unsigned long when = tcp_probe0O_when(sk, TCP_RTO_MAX);

when = tcp_clamp_probeO_to_user_timeout(sk, when);
tcp_reset_xmit_timer(sk, ICSK_TIME PROBEO, when, TCP_RTO_MAX);

}
static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)

return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
inet_csk(sk)->icsk_ca_state != TCP_CA_Open;

}

/* Decide wheather to run the increase function of congestion control. */
static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
{

/* If reordering is high then always grow cwnd whenever data is

* delivered regardless of its ordering. Otherwise stay conservative
and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
new SACK or ECE mark may first advance cwnd here and later reduce
* cwnd in tcp fastretrans_alert() based on more states.
*/
if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)

return flag & FLAG_FORWARD_PROGRESS;

return flag & FLAG_DATA_ACKED;

/* Check that window update is acceptable.
* The function assumes that snd una<=ack<=snd next.
*/
static inline bool tcp_may_update_window(const struct tcp_sock *tp,
const u32 ack, const u32 ack_seq,
const u32 nwin)

{
return after(ack, tp->snd_una) ||
after (ack_seq, tp->snd_wll) ||
(ack_seq == tp->snd_wll && nwin > tp->snd_wnd);
}

/* If we update tp->snd una, also update tp->bytes _acked */
static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
{

u32 delta = ack - tp->snd_una;

sock_owned_by_me((struct sock *)tp);
tp->bytes_acked += delta;

Reverse-Engineering Congestion Control Algorithm Behavior

Cp o mpies_ssveaves o seave,
WRITE_ONCE (tp->rev_nxt, seq);
}

/* Update our send window.

* W

ndow update algorithm, described in RFC793/RFC1122 (used in linux-2.2
* and in FreeBSD. NetBSD's one is even worse.) is wrong.
*/

static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
u32 ack_seq)
{
struct tcp_sock *tp = tcp_sk(sk);
int flag = 0;
u32 nwin = ntohs(tcp_hdr(skb)->window);

if (likely(!tcp_hdr(skb)->syn))
nwin <<= tp->rx_opt.snd_wscale;

if (tcp_may_update_window(tp, ack, ack_seq, mwin)) {
flag |= FLAG_WIN_UPDATE;
tcp_update_wl(tp, ack_seq);

if (tp->snd_wnd nwin) {
tp->snd_wnd = nwin;

/* Note, it is the only place, where

* fast path is recovered for sending TCP.
tp->pred_flags = 0;
tcp_fast_path_check(sk);

if (ltep_write_queue_empty(sk))
tcp_slow_start_after_idle_check(sk);

if (nwin > tp->max_window) {
tp->max_window = nwin;
tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);

}
tep_snd_una_update(tp, ack);

return flag;

}

static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
u32 *last_oow_ack_time)
{
if (*last_oow_ack_time) {
s32 elapsed = (s32) (tcp_jiffies32 - *last_oow_ack_time);

if (0 <= elapsed & elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit)
NET_INC_STATS (net, mib_idx);
return true; /* rate-1i

ed: don't send yet! */
}
*last_oow_ack_time = tcp_jiffies32;

return false; /* not rate-limited: go ahead, send dupack now! */

Return true if we're currently rate-limiting out-of-window ACKs and
thus shouldn't send a dupack right now. We rate-limit dupacks in
response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
attacks that send repeated SYNs or ACKs for the same connection. To
do this, we do not send a duplicate SYNACK or ACK if the remote
endpoint is sending out-of-window SYNs or pure ACKs at a high rate.

N

bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
int mib_idx, u32 *last_oow_ack_time)
{
/* Data packets without SYNs are not likely part of an ACK loop. */
if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
Itcp_hdr (skb)->syn)

{

Most congestion control code is boilerplate

Boilerplate code

static void tep_cong control(struct sock *sk, u32 ack, u32 acked_sacked,
int flag, const struct rate_sample *rs)

const struct inet_cor jection so~k fi~sk 5 inet_csk(sk);

if (icsk->icsk_ca_ops “——-ng '£o.*~ sl)
icsk->icsk_ca_ops->cong_control(sk, rs);
return;

}

if (tcp_in_cwnd red [¢t ol (s ||\ _/

tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag);
} else if (tcp_may_raise_cwnd(sk, flag)) {

tcp_cong_avoid(sk, ack, acked_sacked);

tcp_update_pacing_rate(sk);

November 6, 2024

Reverse-Engineering Congestion Control Algorithm Behavior

Abagnale uses program synthesis to reverse
engineer CCAs

Ft);%kezt Synthesizer CCA

November 6, 2024 Reverse-Engineering Congestion Control Algorithm Behavior

Abagnale reverse engineers CCAs by
synthesizing event handlers

E[)raa%kee; Synthesizer CCA

November 6, 2024 Reverse-Engineering Congestion Control Algorithm Behavior

CCAs are modeled as a set of handler
functions

h(cwnd;, signals;) = cwnd,,

November 6, 2024 Reverse-Engineering Congestion Control Algorithm Behavior

The output of each execution of each handler
Is used as input to the next execution

(cwnd,, signals)
(cwnd,, signals,)
h(cwnd, , signals,) = cwnd,
()
()

—h

cwnds, signals,
cwnd,, signals,

h(cwnd,_;, signals,_;) = cwnd,

November 6, 2024 Reverse-Engineering Congestion Control Algorithm Behavior

The behavior in the trace is the result of
successive execution of the handlers

TCP Reno
1.2
1.0-
B e
éo.a-
&0 0.6
c
=041 Py
0.2
00 T T T T T T
5 5.0 75 100 125 15.0
Time (s)

h: cwnd + MSS * acked-bytes / cwnd

November 6, 2024 Reverse-Engineering Congestion Control Algorithm Behavior

Abagnale

event

packet traces Synthesizer handlers

November 6, 2024 Reverse-Engineering Congestion Control Algorithm Behavior

Abagnale’s synthesis pipeline

Refinement Loop

Enumeration

packet event
traces handlers
Simulation
November 6, 2024 Reverse-Engineering Congestion Control Algorithm Behavior H

Abagnale’s DSL defines the search space

Refinement Loop

Enumeration

Simulation

November 6, 2024 Reverse-Engineering Congestion Control Algorithm Behavior

Domain-Specific Language (DSL)

The DSL includes:

* The congestion signals that can be used as inputs

ex: cwnd, MSS, acked-bytes, time-since-loss, RTT, min-RTT, ack-rate, ...

* The operators that can be used to combine them
ex: +, —, /, *, if-then-else, <, >, ...

* Numerical constants c,, c,, C5, ...

November 6, 2024 Reverse-Engineering Congestion Control Algorithm Behavior

Handlers are compositions of DSL components

November 6, 2024

TCP Reno

A

0.0

o — —
o0 o (8]
1 1

S
o

in flight (Mbit)

S
NN

o
)

25 5.0 75 100 125 15.0
Time (s)

h: cwnd + MSS * acked-bytes / cwnd

Reverse-Engineering Congestion Control Algorithm Behavior

Handlers are compositions of DSL components

November 6, 2024

TCP Reno

A

0.0

o — —
o0 o (8]
1 1

S
o

in flight (Mbit)

S
NN

o
)

25 5.0 75 100 125 15.0
Time (s)

h: cwnd + MSS * acked-bytes / cwnd

3 operators

Reverse-Engineering Congestion Control Algorithm Behavior

Handlers are compositions of DSL components

November 6, 2024

TCP Reno

A

0.0

o — —
o0 o (8]
1 1

S
o

in flight (Mbit)

S
NN

o
)

25 5.0 75 100 125 15.0
Time (s)

h: cwnd + MSS * acked-bytes / cwnd

L

3 congestion signals + 3 operators

Reverse-Engineering Congestion Control Algorithm Behavior

The search space grows exponentially with the
number of DSL components

7E+09

6E+09

)]
m
+
o
©

4E+09

Number of depth-3 handlers

0 5 10 15 20 25
Number of DSL components

—
More expressive DSLs

November 6, 2024 Reverse-Engineering Congestion Control Algorithm Behavior

The search space grows exponentially with the
number of DSL components

7E+09
6E+09

S5E+09

"
—
Q@
©
c
©
<
™

- 4E+09 6 DSL components
v/ Supports Reno-like CCAs

JEr ~ 100k handlers

2E+09

Number of depth

1E+09

0
0 5 10 15 20 25

Number of DSL components

November 6, 2024 Reverse-Engineering Congestion Control Algorithm Behavior

The search space grows exponentially with the
number of DSL components

7E+09
6E+09

S5E+09

"
—
Q@
©
c
©
<
™

- 4E+09 14 DSL components
v/ Supports BBR-like CCAs

JEr ~ 100M handlers

2E+09

Number of depth

1E+09

0
0 5 10 15 20 25

Number of DSL components

November 6, 2024 Reverse-Engineering Congestion Control Algorithm Behavior

The search space grows exponentially with the
number of DSL components

7E+09
6E+09

SE+09

"
—
Q@
©
c
©
<
™

- 4E+09 25 DSL components
v/ Supports 13 Linux kernel CCAs

SEr ~ 60B handlers

Number of depth
N
m
+
3

1E+09

0 5 10 15 20 25
Number of DSL components

November 6, 2024 Reverse-Engineering Congestion Control Algorithm Behavior

The search space grows exponentially with the
number of DSL components

7E+09

6E+09

andlers

SE+09

| 25 DSL components
L E+09 v Supports 13 Linux kernel CCAs

~ 60B handlers

2E+09

Number o

1E+09

0
0 5 10 15 20 25

Number of DSL components

November 6, 2024 Reverse-Engineering Congestion Control Algorithm Behavior

The search space grows exponentially with the
number of DSL components

4E+177
3.5E+177

3E+177

2 5E+177
DE+177 25 DSL components
v Supports 13 Linux kernel CCAs

1 5E+177 > 10177 handlers

andlers

(@)
o)
o]
E 1E+177
>
zZ

SE+176

0
0 5 10 15 20 25

Number of DSL components

November 6, 2024 Reverse-Engineering Congestion Control Algorithm Behavior

Abagnale’s enumeration traverses the search
space

Refinement Loop

Enumeration

Simulation

November 6, 2024 Reverse-Engineering Congestion Control Algorithm Behavior

Solver-based pruning removes 99.9999% of
the search space

November 6, 2024 Reverse-Engineering Congestion Control Algorithm Behavior

Solver-based pruning removes 99.9999% of
the search space

Solver-based pruning removes all handlers that
 do not type-check,
* do not unit-check,
* are algebraically equivalent to other handlers
» would never increase or never decrease the signal they are computing

November 6, 2024 Reverse-Engineering Congestion Control Algorithm Behavior

Solver-based pruning removes 99.9999% of
the search space

Solver-based pruning removes all handlers that
 do not type-check,
* do not unit-check,
* are algebraically equivalent to other handlers
» would never increase or never decrease the signal they are computing

it still leaves >100k handlers In the search space to be explored

ey

November 6, 2024 Reverse-Engineering Congestion Control Algorithm Behavior

Partition the space to parallelize the search

Search space

November 6, 2024 Reverse-Engineering Congestion Control Algorithm Behavior

Partition the space to parallelize the search

November 6, 2024 Reverse-Engineering Congestion Control Algorithm Behavior

Partition the space to parallelize the search

We partition the search space
such that parts:

« are disjoint

e can be encoded in the
enumerator

November 6, 2024 Reverse-Engineering Congestion Control Algorithm Behavior

Abagnale

Refinement Loop

Enumeration

Simulation

November 6, 2024 Reverse-Engineering Congestion Control Algorithm Behavior

We simulate each candidate CCA in the same
conditions that we collected the trace

Bytes in flight

November 6, 2024

—— collected trace

time (s)

Reverse

-Engineering Congestion Control Algorithm Behavior

We simulate each candidate CCA in the same

conditions that we collected the trace

Bytes in flight

November 6, 2024

—— collected trace
synthesized trace

14
v’

P We get a second trace,
the synthesized trace, and
we can compare them.

time (s)

Reverse

-Engineering Congestion Control Algorithm Behavior

We will never find a CCA that exactly matches
a hoisy trace

— collected trace
synthesized trace

Unrealistic!

Bytes in flight

-

- -
-
- s
- ”

time (s)

November 6, 2024 Reverse-Engineering Congestion Control Algorithm Behavior

We will never find an exact match, so we look
for an approximate match

Bytes in flight

—— collected trace
synthesized trace

i
1
| |
I I
I L}
| ’/ ’
1 g K

November 6, 2024

time (s)

We look at the distance
between the synthesized
and the collected traces

Reverse-Engineering Congestion Control Algorithm Behavior

We will never find an exact match, so we look

for an approximate match

Bytes in flight

November 6, 2024

—— trace
synthesized #1
-== synthesized #2 ‘
¥ -l
- 1
,——— - 1
g | W7
4 1 7 /
{4 1 / | /
(4 1 U4 | U4
U4 1/ 7 U4
U4 / /
J }II ht
L y [

We look at the distance
between the synthesized
and the collected traces, and

select the CCA handler with
the minimum distance

Reverse-Engineering Congestion Control Algorithm Behavior

Abagnale

Refinement Loop

Enumeration

Simulation

November 6, 2024 Reverse-Engineering Congestion Control Algorithm Behavior

Evaluation

Carnegie
Mellon
University

Reverse-Engineering Congestion Control Algorithm Behavior

Evaluation overview

We compare the semantics of Abagnale’s synthesized handler with a
handwritten version of the handler finetuned by a domain expert

November 6, 2024 Reverse-Engineering Congestion Control Algorithm Behavior

Evaluation overview

We compare the semantics of Abagnale’s synthesized handler with a
handwritten version of the handler finetuned by a domain expert

We evaluate Abagnale in
« 13 Linux kernel CCAs

November 6, 2024 Reverse-Engineering Congestion Control Algorithm Behavior

Evaluation overview

We compare the semantics of Abagnale’s synthesized handler with a
handwritten version of the handler finetuned by a domain expert

We evaluate Abagnale in

* 13 Linux kernel CCAs
« 7 unknown CCAs implemented by students as part of a class

November 6, 2024 Reverse-Engineering Congestion Control Algorithm Behavior

Evaluation overview

We compare the semantics of Abagnale’s synthesized handler with a
handwritten version of the handler finetuned by a domain expert

We evaluate Abagnale in

* 13 Linux kernel CCAs
« 7 unknown CCAs implemented by students as part of a class

Abagnale finds semantically correct handlers for “Reno-like” CCAs, and
semantically proximate handlers for “Vegas-like” and BBR.

o

November 6, 2024 Reverse-Engineering Congestion Control Algorithm Behavior

Evaluation overview
We compare the semantics of Abagnale’s synthesized handler with a
handwritten version of the handler finetuned by a domain expert

We evaluate Abagnale in

* 13 Linux kernel CCAs
« 7 unknown CCAs implemented by students as part of a class

Abagnale finds semantically correct handlers for “Reno-like” CCAs, and
semantically proximate handlers for “Vegas-like” and BBR.

See complete evaluation in the paper!

ot

November 6, 2024 Reverse-Engineering Congestion Control Algorithm Behavior

BBR: Abagnale’s synthesized handler with BBR traces
mimics PROBE_BW pulses, but with a different trigger

collected trace inflight

285 29.0 29.5 30.0 305
Time (s)

November 6, 2024 Reverse-Engineering Congestion Control Algorithm Behavior

BBR: Abagnale’s synthesized handler with BBR traces
mimics PROBE_BW pulses, but with a different trigger

Fine-tuned win-ack handler for BBR
win-ack = ((rtts_since_loss%&() =0)72.6:2.05) - (min_rtt - ack rate)

70000 1
collected trace inflight
fine-tuned trace inflight
65000 1
$ 60000 - ‘ I
s
%)
55000 A
50000 A
28.5 29.0 29.5 30.0 30.5
Time (s)

November 6, 2024 Reverse-Engineering Congestion Control Algorithm Behavior

BBR: Abagnale’s synthesized handler with BBR traces
mimics PROBE_BW pulses, but with a different trigger

Synthesized win-ack handler for BBR
win-ack = (2) - ack rate - min_rtt + ((CWHd%Q.? = O)? 2.05 - cwnd : mss)

Fine-tuned win-ack handler for BBR

win-ack = ((rtts_since_loss%&() = O) ?2.6:2.05) - (min_rtt - ack rate)
70000 1
collected trace inflight
65000 1 s'ynth. trace inflight
fine-tuned trace inflight

MH . “ n

| ”WM’M \ 1'M| n I“llll w,mllll Wi

928.5 29.0 29.5 30.0 305
Time (s)

Reverse-Engineering Congestion Control Algorithm Behavior

November 6, 2024

Reverse-Engineering Congestion Control
Algorithm Behavior

Abagnale outputs simple implementations of Congestion Control
Algorithms from packet traces showing their behavior

« domain-specific strategies allow us to narrow the search space

« we capture the behavior of 13 CCAs from the Linux kernel without any prior knowledge

Margarida Ferreira

margarida@cmu.edu

(Carnegie

Mell %
Ugiv(;}sity marghrid.qgithub.io ‘

mailto:margarida@cmu.edu
https://marghrid.github.io/

