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Actions performed in a cloud computing console 
produce records of the underlying API calls
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Consider the task of stopping some compute 
instances using the cloud computing interface
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Each action performed gets recorded as an API 
method call, along with inputs and output
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StopInstances(ids=["i-029d9", …], force=False)

DescribeInstanceStatus(ids=["i-029d9", …])

StopInstances(ids=["i-029d9", …], force=True)

StopInstances(ids=["i-5b289", …], force=False)

DescribeInstanceStatus(ids=["i-5b289", …])

StopInstances(ids=["i-9ab4e", …], force=False)

DescribeInstanceStatus(ids=["i-9ab4e", …])

StopInstances(ids=["i-9ab4e", …], force=True)

Stopping…
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StopInstances(ids=["i-029d9", …], force=False)

DescribeInstanceStatus(ids=["i-029d9", …])

StopInstances(ids=["i-029d9", …], force=True)

StopInstances(ids=["i-5b289", …], force=False)

DescribeInstanceStatus(ids=["i-5b289", …])

StopInstances(ids=["i-9ab4e", …], force=False)

DescribeInstanceStatus(ids=["i-9ab4e", …])

StopInstances(ids=["i-9ab4e", …], force=True)

Each action performed gets recorded as an API 
method call, along with inputs and output

Stopping…



The sequence of API method calls is a trace that 
represents the task
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StopInstances(ids=["i-029d9", …], force=False)

DescribeInstanceStatus(ids=["i-029d9", …])

StopInstances(ids=["i-029d9", …], force=True)

StopInstances(ids=["i-5b289", …], force=False)

DescribeInstanceStatus(ids=["i-5b289", …])

StopInstances(ids=["i-9ab4e", …], force=False)

DescribeInstanceStatus(ids=["i-9ab4e", …])

StopInstances(ids=["i-9ab4e", …], force=True)

Program Synthesis from Partial Traces



Multiple executions of the same task produce 
different traces
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StopInstances(ids=["i-029d9", …], force=False)

DescribeInstanceStatus(ids=["i-029d9", …])

StopInstances(ids=["i-029d9", …], force=True)

StopInstances(ids=["i-5b289", …], force=False)

DescribeInstanceStatus(ids=["i-5b289", …])

StopInstances(ids=["i-9ab4e", …], force=False)

DescribeInstanceStatus(ids=["i-9ab4e", …])

StopInstances(ids=["i-9ab4e", …], force=True)

2x
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Multiple executions of the same task produce 
different traces
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StopInstances(ids=["i-029d9", …], force=False)

DescribeInstanceStatus(ids=["i-029d9", …])

StopInstances(ids=["i-029d9", …], force=True)

StopInstances(ids=["i-5b289", …], force=False)

DescribeInstanceStatus(ids=["i-5b289", …])

StopInstances(ids=["i-9ab4e", …], force=False)

DescribeInstanceStatus(ids=["i-9ab4e", …])

StopInstances(ids=["i-9ab4e", …], force=True)

3x



Our goal is to synthesize a program that executes a 
task represented by partial program traces
This program can then be offered to the user as a 1-click automation of their task
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Information in traces is incomplete
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part of the 
computation happens 
only in the user’s mind, 

so it does not get 
logged

Illustration from storyset.com

API calls get logged

https://www.storyset.com/


Syren’s Synthesis Pipeline
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partial
execution traces Syren program that 

automates the task



Syren’s Synthesis Pipeline
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partial
execution traces

Syren:
ü Recovers hidden 

computation
ü Generalizes beyond the 

traces

program that 
automates the task



At any point in the synthesis, Syren’s candidate 
program is correct

18 June 2025 Program Synthesis from Partial Traces 13

Definition: Program correctness
A program 𝑃 is correct w.r.t. the input traces Τ!" if 
for every trace 𝜏! ∈ Τ!" there is an input 𝜎 such 
that 𝑃 𝜎  produces 𝜏!.

Ψ 𝑃, Τ!" 	≡ 	∀𝜏! ∈ Τ!"	∃𝜎	𝑃 𝜎 = 	 𝜏!



At any point in the synthesis, Syren’s candidate 
program is correct
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Definition: Program correctness
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At any point in the synthesis, Syren’s candidate 
program is correct
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At any point in the synthesis, Syren’s candidate 
program is correct
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Definition: Program correctness
A program 𝑃 is correct w.r.t. the input traces Τ!" if 
for every trace 𝜏! ∈ Τ!" there is an input 𝜎 such 
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At any point in the synthesis, Syren’s candidate 
program is correct
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Definition: Program correctness
A program 𝑃 is correct w.r.t. the input traces Τ!" if 
for every trace 𝜏! ∈ Τ!" there is an input 𝜎 such 
that 𝑃 𝜎  produces 𝜏!.

Ψ 𝑃, Τ!" 	≡ 	∀𝜏! ∈ Τ!"	∃𝜎	𝑃 𝜎 = 	 𝜏!

But correctness is not enough!



Syren builds an initial program from the partial 
traces
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StopInstances(ids=["i-029d9", …], force=False)

DescribeInstanceStatus(ids=["i-029d9", …])

StopInstances(ids=["i-029d9", …], force=True)

StopInstances(ids=["i-5b289", …], force=False)

DescribeInstanceStatus(ids=["i-5b289", …])

StopInstances(ids=["i-9ab4e", …], force=False)

DescribeInstanceStatus(ids=["i-9ab4e", …])

StopInstances(ids=["i-9ab4e", …], force=True)



Syren builds an initial program from the partial 
traces
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λ.

if (??) {

  let x1 = 

  let x2 = 

  let x3 =

} else if (??) {

  let x1 = 

  let x2 =

} else {

  let x1 = 

  let x2 = 

  let x3 =

}

StopInstances(ids=["i-029d9", …], force=False)

DescribeInstanceStatus(ids=["i-029d9", …])

StopInstances(ids=["i-029d9", …], force=True)

StopInstances(ids=["i-5b289", …], force=False)

DescribeInstanceStatus(ids=["i-5b289", …])

StopInstances(ids=["i-9ab4e", …], force=False)

DescribeInstanceStatus(ids=["i-9ab4e", …])

StopInstances(ids=["i-9ab4e", …], force=True)



StopInstances(ids=["i-029d9", …], force=False)

DescribeInstanceStatus(ids=["i-029d9", …])

StopInstances(ids=["i-029d9", …], force=True)

StopInstances(ids=["i-5b289", …], force=False)

DescribeInstanceStatus(ids=["i-5b289", …])

StopInstances(ids=["i-9ab4e", …], force=False)

DescribeInstanceStatus(ids=["i-9ab4e", …])

StopInstances(ids=["i-9ab4e", …], force=True)

Syren builds an initial program from the partial 
traces

18 June 2025 Program Synthesis from Partial Traces 20

λ branch.

if (branch == 0) {

  let x1 = 

  let x2 = 

  let x3 =

} else if (branch == 1) {

  let x1 = 

  let x2 =

} else {

  let x1 = 

  let x2 = 

  let x3 =

}



StopInstances(ids=["i-029d9", …], force=False)

DescribeInstanceStatus(ids=["i-029d9", …])

StopInstances(ids=["i-029d9", …], force=True)

StopInstances(ids=["i-5b289", …], force=False)

DescribeInstanceStatus(ids=["i-5b289", …])

StopInstances(ids=["i-9ab4e", …], force=False)

DescribeInstanceStatus(ids=["i-9ab4e", …])

StopInstances(ids=["i-9ab4e", …], force=True)

Syren’s initial program is correct by construction
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λ branch.

if (branch == 0) {

  let x1 = 

  let x2 = 

  let x3 =

} else if (branch == 1) {

  let x1 = 

  let x2 =

} else {

  let x1 = 

  let x2 = 

  let x3 =

}

Definition: Program correctness

Ψ 𝑃, Τ!" 	 ≡ 	 ∀𝜏! ∈ Τ!"	∃𝜎	𝑃 𝜎 = 	 𝜏!

The initial program is correct
branch = 0 produces the first trace 
branch = 1 produces the second trace
branch = 2 produces the third trace

But that is not enough!



Syren’s Synthesis Pipeline
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partial
execution traces Syren program



Syren’s Synthesis Pipeline
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partial 
execution 

traces

Syren

program
initial 

program

program 
rewriting



Syren’s Synthesis Pipeline
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Syren

initial 
program

example-based 
synthesizer

program 
rewriting

partial 
execution 

traces
program



Syren’s Synthesis Pipeline
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initial 
program

example-based 
synthesizer

program 
rewritingü correct by construction

✗ no uncovered hidden 
computation

✗ no generalization beyond 
the traces



initial 
program

example-based 
synthesizer

Syren’s Synthesis Pipeline
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ü generalize beyond the traces

program 
rewriting



Syren performs a search over a library of program 
optimizing rewrites

Each rewrite
• maintains program correctness 

• improves the program by lowering a cost metric

Syren implements cost metrics that:
• Penalize syntactic complexity

• Incentivize reuse across traces
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Syren applies compiler-like cost-reducing rewrites
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λ branch.

if (branch == 0) {

  let x1 = 

  let x2 = 

  let x3 =

} else if (branch == 1) {

  let x1 = 

  let x2 =

} else {

  let x1 = 

  let x2 = 

  let x3 =

}

StopInstances(ids=["i-029d9", …], force=False)

DescribeInstanceStatus(ids=["i-029d9", …])

StopInstances(ids=["i-029d9", …], force=True)

StopInstances(ids=["i-5b289", …], force=False)

DescribeInstanceStatus(ids=["i-5b289", …])

StopInstances(ids=["i-9ab4e", …], force=False)

DescribeInstanceStatus(ids=["i-9ab4e", …])

StopInstances(ids=["i-9ab4e", …], force=True)



StopInstances(ids=c1, force=False)

DescribeInstanceStatus(ids=c1)

StopInstances(ids=c1, force=True)

StopInstances(ids=c1, force=False)

DescribeInstanceStatus(ids=c1)

Syren applies compiler-like cost-reducing rewrites
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let c1 = ["i-029d9", …]

let c1 = ["i-5b289", …]

λ branch.

if (branch == 0) {

  let x1 = 

  let x2 = 

  let x3 =

} else if (branch == 1) {

  let x1 = 

  let x2 =

} else {

  …

}
📉  Lower syntactic complexity 



  let x1 = StopInstances(ids=c1, force=False)

  let x2 = DescribeInstanceStatus(ids=c1)

  let x3 = StopInstances(ids=c1, force=True)

  let x1 = StopInstances(ids=c1, force=False)

  let x2 = DescribeInstanceStatus(ids=c1)

let c1 = ["i-029d9", …]

 

  let c1 = ["i-5b289", …]

λ branch.

if (branch == 0) {

 

} else if (branch == 1) {

  

 

} else {

  …

}

Syren applies compiler-like cost-reducing rewrites
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let x1 = StopInstances(ids=c1, force=False)

let x2 = DescribeInstanceStatus(ids=c1)

  let x3 = StopInstances(ids=c1, force=True)

λ branch.

if (branch == 0) {

} else if (branch == 1) {} else {

}

if (branch == 0) { let c1 = ["i-029d9", …] }

else if (branch == 1) { let c1 = ["i-5b289", …] }

else { let c1 = ["i-9ab4e", …] }

Syren applies compiler-like cost-reducing rewrites
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let x3 = StopInstances(ids=c1, force=True) 📉  Lower syntactic complexity 



let x1 = StopInstances(ids=c1, force=False)

let x2 = DescribeInstanceStatus(ids=c1)

  let x3 = StopInstances(ids=c1, force=True)

  let x3 = StopInstances(ids=c1, force=True)

λ branch.

if (branch == 0) {

} else if (branch == 1) {} else {

}

if (branch == 0) { let c1 = ["i-029d9", …] }

else if (branch == 1) { let c1 = ["i-5b289", …] }

else { let c1 = ["i-9ab4e", …] }
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Syren’s rewrites generalize the program

c1 value should be 
an input to the script



let x1 = StopInstances(ids=i1, force=False)

let x2 = DescribeInstanceStatus(ids=i1)

  let x3 = StopInstances(ids=i1, force=True)

 let x3 = StopInstances(ids=i1, force=True)

λ branch, i1.

if (branch == 0) {

} else if (branch == 1) {} else {

}

18 June 2025 Program Synthesis from Partial Traces 34

Syren’s rewrites generalize the program

📉 Lower syntactic complexity 
📉 Removes dependency on branch

⟹ More general program



let x1 = StopInstances(ids=i1, force=False)

let x2 = DescribeInstanceStatus(ids=i1)

  let x3 = StopInstances(ids=i1, force=True)

 let x3 = StopInstances(ids=i1, force=True)

λ branch, i1.

if (branch == 0) {

} else if (branch == 1) {} else {

}
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Syren’s rewrites generalize the program

Can we infer the user’s 
intention from the data we 
can see?



let x1 = StopInstances(ids=i1, force=False)

let x2 = DescribeInstanceStatus(ids=i1)

  let x3 = StopInstances(ids=i1, force=True)

 

let x3 = StopInstances(ids=i1, force=True)

λ i1.

if x4 {

} 

else if (br == 1) {} else {

}
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Syren’s rewrites generalize the program

📉 Lower syntactic complexity 
📉 Removes dependency on branch

⟹ More general program

let x4 = _f(i1, x1, x2)

where

_f := ??



Syren’s Synthesis Pipeline

18 June 2025 Program Synthesis from Partial Traces 37

initial 
program

example-based 
synthesizer

program 
rewritingü correct by 

construction

ü generalize beyond the traces

ü maintain correctness
✗ no uncovered hidden computation



initial 
program

example-based 
synthesizer

program 
rewriting

Syren’s Synthesis Pipeline
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λ i1.

let x1 = StopInstances(ids=i1, force=False)

let x2 = DescribeInstanceStatus(ids=i1)

let x4 = _f(i1, x1, x2)

if x4 {

  let x3 = StopInstances(ids=i1, force=True)

}

where

_f := ??
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_f is a new function that takes as input every 
constant defined in the program up until that point. 
How do we find an implementation for _f?

The last rewrite introduced an undefined function  
_f



The last rewrite introduced an undefined function  
_f
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λ i1.

let x1 = StopInstances(ids=i1, force=False)
let x2 = DescribeInstanceStatus(ids=i1)

let x4 = _f(i1, x1, x2)

if x4 {

  let x3 = StopInstances(ids=i1, force=True)

}

where

_f := ??

_f(𝜏0[i1], 𝜏0[x1], 𝜏0[x2]) 
    = True

With _f is such that:

_f(𝜏1[i1], 𝜏1[x1], 𝜏1[x2])
    = False

… for all input traces 𝜏i

_f(𝜏2[i1], 𝜏2[x1], 𝜏2[x2])
    = True



We synthesize _f from input-output examples
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_f is such that:

… for all input traces 𝜏i

Off-the-shelf example-based 
synthesizer

_f := (a,b,c) ->
    c.InstanceStatuses[0].State.Name
    != "stopped"

_f(𝜏0[i1], 𝜏0[x1], 𝜏0[x2]) 
    = True

_f(𝜏1[i1], 𝜏1[x1], 𝜏1[x2])
    = False

_f(𝜏2[i1], 𝜏2[x1], 𝜏2[x2])
    = True

Rosette



_f := (a,b,c) ->
    c.InstanceStatuses[0].State.Name
    != "stopped"

                // selects the third input and extracts the status

We synthesize _f from input-output examples
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λ i1.

let x1 = StopInstances(ids=i1, force=False)
let x2 = DescribeInstanceStatus(ids=i1)

let x4 = _f(i1, x1, x2)
if x4 {

  let x3 = StopInstances(ids=i1, force=True)
}
where



Syren’s Synthesis Pipeline
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initial 
program

example-based 
synthesizer

program 
rewritingü correct by 

construction

ü generalize beyond the traces

ü maintain correctness

ü uncovers hidden computation

ü maintain correctness



[...]  mkdir         [...]/Documents/NewFolder            0.000007
[...]  getattrlist   [...]/Documents/NewFolder            0.000005
[...]  setattrlist   [...]/Documents/NewFolder            0.000006
[...]  open          [...]/Documents/NewFolder/note.txt   0.000023
[...]  write         [...]/Documents/NewFolder/note.txt   0.000032
[...]  fsync         [...]/Documents/NewFolder/note.txt   0.000048
[...]  close         [...]/Documents/NewFolder/note.txt   0.000005
[...]  open          [...]/Documents/NewFolder/note.txt   0.000009
[...]  read          [...]/Documents/NewFolder/note.txt   0.000011
[...]  open          [...]/Desktop/note copy.txt          0.000007
[...]  write         [...]/Desktop/note copy.txt          0.000014
[...]  fsync         [...]/Desktop/note copy.txt          0.000006
[...]  close         [...]/Desktop/note copy.txt          0.000004

Syren can be used beyond traces of API calls:
Filesystem manipulations get recorded as system traces 
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Copy



Evaluation overview 54 benchmarks 
• Cloud automation, filesystem 

manipulation, and document 
editing scripts

• AWS cloud automation scripts, 
Blink automations, related work

Synthesized programs with
• ≤ 4 control flow structures 

(conditionals and loops)
• ≤ 2 hidden functions synthesized 

from input-output examples

LLM (Claude 3.5 Sonnet) found 
the intended program for only 
53% of the benchmarks
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The example shown 
before synthesizes 

correctly in 58 seconds

72% benchmarks 
synthesized correctly 
within 5-min timeout



Program Synthesis from Partial Traces

We presented Syren, a synthesis method that enriches 
compiler-like optimizing rewrites with calls to an 
off-the-shelf example-based synthesizer to uncover control 
flow and hidden functions, and produce general-purpose 
scripts from partial traces of their execution.
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Margarida Ferreira
margarida@cmu.edu

Read the paper!

Try out Syren!

Do you have an application 
where Syren may be applied?


