
Program Synthesis from
Partial Traces

Margarida Ferreira, Victor Nicolet, Joey Dodds, Daniel Kroening

Actions performed in a cloud computing console
produce records of the underlying API calls

18 June 2025 Program Synthesis from Partial Traces 2

Consider the task of stopping some compute
instances using the cloud computing interface

18 June 2025 Program Synthesis from Partial Traces 3

1

2 4

3

Each action performed gets recorded as an API
method call, along with inputs and output

18 June 2025 Program Synthesis from Partial Traces 4

StopInstances(ids=["i-029d9", …], force=False)

DescribeInstanceStatus(ids=["i-029d9", …])

StopInstances(ids=["i-029d9", …], force=True)

StopInstances(ids=["i-5b289", …], force=False)

DescribeInstanceStatus(ids=["i-5b289", …])

StopInstances(ids=["i-9ab4e", …], force=False)

DescribeInstanceStatus(ids=["i-9ab4e", …])

StopInstances(ids=["i-9ab4e", …], force=True)

Stopping…

18 June 2025 Program Synthesis from Partial Traces 5

StopInstances(ids=["i-029d9", …], force=False)

DescribeInstanceStatus(ids=["i-029d9", …])

StopInstances(ids=["i-029d9", …], force=True)

StopInstances(ids=["i-5b289", …], force=False)

DescribeInstanceStatus(ids=["i-5b289", …])

StopInstances(ids=["i-9ab4e", …], force=False)

DescribeInstanceStatus(ids=["i-9ab4e", …])

StopInstances(ids=["i-9ab4e", …], force=True)

Each action performed gets recorded as an API
method call, along with inputs and output

Stopping…

The sequence of API method calls is a trace that
represents the task

18 June 2025 6

StopInstances(ids=["i-029d9", …], force=False)

DescribeInstanceStatus(ids=["i-029d9", …])

StopInstances(ids=["i-029d9", …], force=True)

StopInstances(ids=["i-5b289", …], force=False)

DescribeInstanceStatus(ids=["i-5b289", …])

StopInstances(ids=["i-9ab4e", …], force=False)

DescribeInstanceStatus(ids=["i-9ab4e", …])

StopInstances(ids=["i-9ab4e", …], force=True)

Program Synthesis from Partial Traces

Multiple executions of the same task produce
different traces

18 June 2025 7

StopInstances(ids=["i-029d9", …], force=False)

DescribeInstanceStatus(ids=["i-029d9", …])

StopInstances(ids=["i-029d9", …], force=True)

StopInstances(ids=["i-5b289", …], force=False)

DescribeInstanceStatus(ids=["i-5b289", …])

StopInstances(ids=["i-9ab4e", …], force=False)

DescribeInstanceStatus(ids=["i-9ab4e", …])

StopInstances(ids=["i-9ab4e", …], force=True)

2x

Program Synthesis from Partial Traces

Multiple executions of the same task produce
different traces

18 June 2025 Program Synthesis from Partial Traces 8

StopInstances(ids=["i-029d9", …], force=False)

DescribeInstanceStatus(ids=["i-029d9", …])

StopInstances(ids=["i-029d9", …], force=True)

StopInstances(ids=["i-5b289", …], force=False)

DescribeInstanceStatus(ids=["i-5b289", …])

StopInstances(ids=["i-9ab4e", …], force=False)

DescribeInstanceStatus(ids=["i-9ab4e", …])

StopInstances(ids=["i-9ab4e", …], force=True)

3x

Our goal is to synthesize a program that executes a
task represented by partial program traces
This program can then be offered to the user as a 1-click automation of their task

18 June 2025 Program Synthesis from Partial Traces 9

Information in traces is incomplete

18 June 2025 Program Synthesis from Partial Traces 10

part of the
computation happens
only in the user’s mind,

so it does not get
logged

Illustration from storyset.com

API calls get logged

https://www.storyset.com/

Syren’s Synthesis Pipeline

18 June 2025 Program Synthesis from Partial Traces 11

partial
execution traces Syren program that

automates the task

Syren’s Synthesis Pipeline

18 June 2025 Program Synthesis from Partial Traces 12

partial
execution traces

Syren:
ü Recovers hidden

computation
ü Generalizes beyond the

traces

program that
automates the task

At any point in the synthesis, Syren’s candidate
program is correct

18 June 2025 Program Synthesis from Partial Traces 13

Definition: Program correctness
A program 𝑃 is correct w.r.t. the input traces Τ!" if
for every trace 𝜏! ∈ Τ!" there is an input 𝜎 such
that 𝑃 𝜎 produces 𝜏!.

Ψ 𝑃, Τ!" 	≡ 	∀𝜏! ∈ Τ!"	∃𝜎	𝑃 𝜎 = 	 𝜏!

At any point in the synthesis, Syren’s candidate
program is correct

18 June 2025 Program Synthesis from Partial Traces 14

Definition: Program correctness
A program 𝑃 is correct w.r.t. the input traces Τ!" if
for every trace 𝜏! ∈ Τ!" there is an input 𝜎 such
that 𝑃 𝜎 produces 𝜏!.

Ψ 𝑃, Τ!" 	≡ 	∀𝜏! ∈ Τ!"	∃𝜎	𝑃 𝜎 = 	 𝜏!

At any point in the synthesis, Syren’s candidate
program is correct

18 June 2025 Program Synthesis from Partial Traces 15

Definition: Program correctness
A program 𝑃 is correct w.r.t. the input traces Τ!" if
for every trace 𝜏! ∈ Τ!" there is an input 𝜎 such
that 𝑃 𝜎 produces 𝜏!.

Ψ 𝑃, Τ!" 	≡ 	∀𝜏! ∈ Τ!"	∃𝜎	𝑃 𝜎 = 	 𝜏!

At any point in the synthesis, Syren’s candidate
program is correct

18 June 2025 Program Synthesis from Partial Traces 16

Definition: Program correctness
A program 𝑃 is correct w.r.t. the input traces Τ!" if
for every trace 𝜏! ∈ Τ!" there is an input 𝜎 such
that 𝑃 𝜎 produces 𝜏!.

Ψ 𝑃, Τ!" 	≡ 	∀𝜏! ∈ Τ!"	∃𝜎	𝑃 𝜎 = 	 𝜏!

At any point in the synthesis, Syren’s candidate
program is correct

18 June 2025 Program Synthesis from Partial Traces 17

Definition: Program correctness
A program 𝑃 is correct w.r.t. the input traces Τ!" if
for every trace 𝜏! ∈ Τ!" there is an input 𝜎 such
that 𝑃 𝜎 produces 𝜏!.

Ψ 𝑃, Τ!" 	≡ 	∀𝜏! ∈ Τ!"	∃𝜎	𝑃 𝜎 = 	 𝜏!

But correctness is not enough!

Syren builds an initial program from the partial
traces

18 June 2025 Program Synthesis from Partial Traces 18

StopInstances(ids=["i-029d9", …], force=False)

DescribeInstanceStatus(ids=["i-029d9", …])

StopInstances(ids=["i-029d9", …], force=True)

StopInstances(ids=["i-5b289", …], force=False)

DescribeInstanceStatus(ids=["i-5b289", …])

StopInstances(ids=["i-9ab4e", …], force=False)

DescribeInstanceStatus(ids=["i-9ab4e", …])

StopInstances(ids=["i-9ab4e", …], force=True)

Syren builds an initial program from the partial
traces

18 June 2025 Program Synthesis from Partial Traces 19

λ.

if (??) {

 let x1 =

 let x2 =

 let x3 =

} else if (??) {

 let x1 =

 let x2 =

} else {

 let x1 =

 let x2 =

 let x3 =

}

StopInstances(ids=["i-029d9", …], force=False)

DescribeInstanceStatus(ids=["i-029d9", …])

StopInstances(ids=["i-029d9", …], force=True)

StopInstances(ids=["i-5b289", …], force=False)

DescribeInstanceStatus(ids=["i-5b289", …])

StopInstances(ids=["i-9ab4e", …], force=False)

DescribeInstanceStatus(ids=["i-9ab4e", …])

StopInstances(ids=["i-9ab4e", …], force=True)

StopInstances(ids=["i-029d9", …], force=False)

DescribeInstanceStatus(ids=["i-029d9", …])

StopInstances(ids=["i-029d9", …], force=True)

StopInstances(ids=["i-5b289", …], force=False)

DescribeInstanceStatus(ids=["i-5b289", …])

StopInstances(ids=["i-9ab4e", …], force=False)

DescribeInstanceStatus(ids=["i-9ab4e", …])

StopInstances(ids=["i-9ab4e", …], force=True)

Syren builds an initial program from the partial
traces

18 June 2025 Program Synthesis from Partial Traces 20

λ branch.

if (branch == 0) {

 let x1 =

 let x2 =

 let x3 =

} else if (branch == 1) {

 let x1 =

 let x2 =

} else {

 let x1 =

 let x2 =

 let x3 =

}

StopInstances(ids=["i-029d9", …], force=False)

DescribeInstanceStatus(ids=["i-029d9", …])

StopInstances(ids=["i-029d9", …], force=True)

StopInstances(ids=["i-5b289", …], force=False)

DescribeInstanceStatus(ids=["i-5b289", …])

StopInstances(ids=["i-9ab4e", …], force=False)

DescribeInstanceStatus(ids=["i-9ab4e", …])

StopInstances(ids=["i-9ab4e", …], force=True)

Syren’s initial program is correct by construction

18 June 2025 Program Synthesis from Partial Traces 21

λ branch.

if (branch == 0) {

 let x1 =

 let x2 =

 let x3 =

} else if (branch == 1) {

 let x1 =

 let x2 =

} else {

 let x1 =

 let x2 =

 let x3 =

}

Definition: Program correctness

Ψ 𝑃, Τ!" 	 ≡ 	 ∀𝜏! ∈ Τ!"	∃𝜎	𝑃 𝜎 = 	 𝜏!

The initial program is correct
branch = 0 produces the first trace
branch = 1 produces the second trace
branch = 2 produces the third trace

But that is not enough!

Syren’s Synthesis Pipeline

18 June 2025 Program Synthesis from Partial Traces 22

partial
execution traces Syren program

Syren’s Synthesis Pipeline

18 June 2025 Program Synthesis from Partial Traces 23

partial
execution

traces

Syren

program
initial

program

program
rewriting

Syren’s Synthesis Pipeline

18 June 2025 Program Synthesis from Partial Traces 24

Syren

initial
program

example-based
synthesizer

program
rewriting

partial
execution

traces
program

Syren’s Synthesis Pipeline

18 June 2025 Program Synthesis from Partial Traces 26

initial
program

example-based
synthesizer

program
rewritingü correct by construction

✗ no uncovered hidden
computation

✗ no generalization beyond
the traces

initial
program

example-based
synthesizer

Syren’s Synthesis Pipeline

18 June 2025 Program Synthesis from Partial Traces 27

ü generalize beyond the traces

program
rewriting

Syren performs a search over a library of program
optimizing rewrites

Each rewrite
• maintains program correctness

• improves the program by lowering a cost metric

Syren implements cost metrics that:
• Penalize syntactic complexity

• Incentivize reuse across traces

18 June 2025 Program Synthesis from Partial Traces 28

Syren applies compiler-like cost-reducing rewrites

18 June 2025 Program Synthesis from Partial Traces 29

λ branch.

if (branch == 0) {

 let x1 =

 let x2 =

 let x3 =

} else if (branch == 1) {

 let x1 =

 let x2 =

} else {

 let x1 =

 let x2 =

 let x3 =

}

StopInstances(ids=["i-029d9", …], force=False)

DescribeInstanceStatus(ids=["i-029d9", …])

StopInstances(ids=["i-029d9", …], force=True)

StopInstances(ids=["i-5b289", …], force=False)

DescribeInstanceStatus(ids=["i-5b289", …])

StopInstances(ids=["i-9ab4e", …], force=False)

DescribeInstanceStatus(ids=["i-9ab4e", …])

StopInstances(ids=["i-9ab4e", …], force=True)

StopInstances(ids=c1, force=False)

DescribeInstanceStatus(ids=c1)

StopInstances(ids=c1, force=True)

StopInstances(ids=c1, force=False)

DescribeInstanceStatus(ids=c1)

Syren applies compiler-like cost-reducing rewrites

18 June 2025 Program Synthesis from Partial Traces 30

let c1 = ["i-029d9", …]

let c1 = ["i-5b289", …]

λ branch.

if (branch == 0) {

 let x1 =

 let x2 =

 let x3 =

} else if (branch == 1) {

 let x1 =

 let x2 =

} else {

 …

}
📉 Lower syntactic complexity

 let x1 = StopInstances(ids=c1, force=False)

 let x2 = DescribeInstanceStatus(ids=c1)

 let x3 = StopInstances(ids=c1, force=True)

 let x1 = StopInstances(ids=c1, force=False)

 let x2 = DescribeInstanceStatus(ids=c1)

let c1 = ["i-029d9", …]

 let c1 = ["i-5b289", …]

λ branch.

if (branch == 0) {

} else if (branch == 1) {

} else {

 …

}

Syren applies compiler-like cost-reducing rewrites

18 June 2025 Program Synthesis from Partial Traces 31

let x1 = StopInstances(ids=c1, force=False)

let x2 = DescribeInstanceStatus(ids=c1)

 let x3 = StopInstances(ids=c1, force=True)

λ branch.

if (branch == 0) {

} else if (branch == 1) {} else {

}

if (branch == 0) { let c1 = ["i-029d9", …] }

else if (branch == 1) { let c1 = ["i-5b289", …] }

else { let c1 = ["i-9ab4e", …] }

Syren applies compiler-like cost-reducing rewrites

18 June 2025 Program Synthesis from Partial Traces 32

let x3 = StopInstances(ids=c1, force=True) 📉 Lower syntactic complexity

let x1 = StopInstances(ids=c1, force=False)

let x2 = DescribeInstanceStatus(ids=c1)

 let x3 = StopInstances(ids=c1, force=True)

 let x3 = StopInstances(ids=c1, force=True)

λ branch.

if (branch == 0) {

} else if (branch == 1) {} else {

}

if (branch == 0) { let c1 = ["i-029d9", …] }

else if (branch == 1) { let c1 = ["i-5b289", …] }

else { let c1 = ["i-9ab4e", …] }

18 June 2025 Program Synthesis from Partial Traces 33

Syren’s rewrites generalize the program

c1 value should be
an input to the script

let x1 = StopInstances(ids=i1, force=False)

let x2 = DescribeInstanceStatus(ids=i1)

 let x3 = StopInstances(ids=i1, force=True)

 let x3 = StopInstances(ids=i1, force=True)

λ branch, i1.

if (branch == 0) {

} else if (branch == 1) {} else {

}

18 June 2025 Program Synthesis from Partial Traces 34

Syren’s rewrites generalize the program

📉 Lower syntactic complexity
📉 Removes dependency on branch

⟹ More general program

let x1 = StopInstances(ids=i1, force=False)

let x2 = DescribeInstanceStatus(ids=i1)

 let x3 = StopInstances(ids=i1, force=True)

 let x3 = StopInstances(ids=i1, force=True)

λ branch, i1.

if (branch == 0) {

} else if (branch == 1) {} else {

}

18 June 2025 Program Synthesis from Partial Traces 35

Syren’s rewrites generalize the program

Can we infer the user’s
intention from the data we
can see?

let x1 = StopInstances(ids=i1, force=False)

let x2 = DescribeInstanceStatus(ids=i1)

 let x3 = StopInstances(ids=i1, force=True)

let x3 = StopInstances(ids=i1, force=True)

λ i1.

if x4 {

}

else if (br == 1) {} else {

}

18 June 2025 Program Synthesis from Partial Traces 36

Syren’s rewrites generalize the program

📉 Lower syntactic complexity
📉 Removes dependency on branch

⟹ More general program

let x4 = _f(i1, x1, x2)

where

_f := ??

Syren’s Synthesis Pipeline

18 June 2025 Program Synthesis from Partial Traces 37

initial
program

example-based
synthesizer

program
rewritingü correct by

construction

ü generalize beyond the traces

ü maintain correctness
✗ no uncovered hidden computation

initial
program

example-based
synthesizer

program
rewriting

Syren’s Synthesis Pipeline

18 June 2025 Program Synthesis from Partial Traces 38

λ i1.

let x1 = StopInstances(ids=i1, force=False)

let x2 = DescribeInstanceStatus(ids=i1)

let x4 = _f(i1, x1, x2)

if x4 {

 let x3 = StopInstances(ids=i1, force=True)

}

where

_f := ??

18 June 2025 Program Synthesis from Partial Traces 39

_f is a new function that takes as input every
constant defined in the program up until that point.
How do we find an implementation for _f?

The last rewrite introduced an undefined function
_f

The last rewrite introduced an undefined function
_f

18 June 2025 Program Synthesis from Partial Traces 40

λ i1.

let x1 = StopInstances(ids=i1, force=False)
let x2 = DescribeInstanceStatus(ids=i1)

let x4 = _f(i1, x1, x2)

if x4 {

 let x3 = StopInstances(ids=i1, force=True)

}

where

_f := ??

_f(𝜏0[i1], 𝜏0[x1], 𝜏0[x2])
 = True

With _f is such that:

_f(𝜏1[i1], 𝜏1[x1], 𝜏1[x2])
 = False

… for all input traces 𝜏i

_f(𝜏2[i1], 𝜏2[x1], 𝜏2[x2])
 = True

We synthesize _f from input-output examples

18 June 2025 Program Synthesis from Partial Traces 41

_f is such that:

… for all input traces 𝜏i

Off-the-shelf example-based
synthesizer

_f := (a,b,c) ->
 c.InstanceStatuses[0].State.Name
 != "stopped"

_f(𝜏0[i1], 𝜏0[x1], 𝜏0[x2])
 = True

_f(𝜏1[i1], 𝜏1[x1], 𝜏1[x2])
 = False

_f(𝜏2[i1], 𝜏2[x1], 𝜏2[x2])
 = True

Rosette

_f := (a,b,c) ->
 c.InstanceStatuses[0].State.Name
 != "stopped"

 // selects the third input and extracts the status

We synthesize _f from input-output examples

18 June 2025 Program Synthesis from Partial Traces 42

λ i1.

let x1 = StopInstances(ids=i1, force=False)
let x2 = DescribeInstanceStatus(ids=i1)

let x4 = _f(i1, x1, x2)
if x4 {

 let x3 = StopInstances(ids=i1, force=True)
}
where

Syren’s Synthesis Pipeline

18 June 2025 Program Synthesis from Partial Traces 43

initial
program

example-based
synthesizer

program
rewritingü correct by

construction

ü generalize beyond the traces

ü maintain correctness

ü uncovers hidden computation

ü maintain correctness

[...] mkdir [...]/Documents/NewFolder 0.000007
[...] getattrlist [...]/Documents/NewFolder 0.000005
[...] setattrlist [...]/Documents/NewFolder 0.000006
[...] open [...]/Documents/NewFolder/note.txt 0.000023
[...] write [...]/Documents/NewFolder/note.txt 0.000032
[...] fsync [...]/Documents/NewFolder/note.txt 0.000048
[...] close [...]/Documents/NewFolder/note.txt 0.000005
[...] open [...]/Documents/NewFolder/note.txt 0.000009
[...] read [...]/Documents/NewFolder/note.txt 0.000011
[...] open [...]/Desktop/note copy.txt 0.000007
[...] write [...]/Desktop/note copy.txt 0.000014
[...] fsync [...]/Desktop/note copy.txt 0.000006
[...] close [...]/Desktop/note copy.txt 0.000004

Syren can be used beyond traces of API calls:
Filesystem manipulations get recorded as system traces

18 June 2025 Program Synthesis from Partial Traces 46

Copy

Evaluation overview 54 benchmarks
• Cloud automation, filesystem

manipulation, and document
editing scripts

• AWS cloud automation scripts,
Blink automations, related work

Synthesized programs with
• ≤ 4 control flow structures

(conditionals and loops)
• ≤ 2 hidden functions synthesized

from input-output examples

LLM (Claude 3.5 Sonnet) found
the intended program for only
53% of the benchmarks

18 June 2025 Program Synthesis from Partial Traces 50

The example shown
before synthesizes

correctly in 58 seconds

72% benchmarks
synthesized correctly
within 5-min timeout

Program Synthesis from Partial Traces

We presented Syren, a synthesis method that enriches
compiler-like optimizing rewrites with calls to an
off-the-shelf example-based synthesizer to uncover control
flow and hidden functions, and produce general-purpose
scripts from partial traces of their execution.

18 June 2025 Program Synthesis from Partial Traces 51

Margarida Ferreira
margarida@cmu.edu

Read the paper!

Try out Syren!

Do you have an application
where Syren may be applied?

