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Abstract

In this project, we studied and evaluated several different techniques to find
an optimal solution for the problem of Cooperative Path-Finding (CPF) based
on Propositional Satisfiability (SAT). Given a set of agents, each with a start and
a goal positions, the task is to find non-colliding paths for the different agents in
the least possible number of time steps. CPF is used to model many real-world
present-day problems in a wide variety of areas.
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1 Introduction

Cooperative Path-Finding (CPF), also know as Multi-Agent Path-Finding (MAPF),
Multi-Robot Path Planning (MRPP) or Pebble Motion on a Graph (PMG), has re-
cently received a lot of attention from the Artificial Intelligence (AI) community, owing
it not only to its numerous practical and present-day applications but also to the chal-
lenges it offers. CPF can be used to model many real-world problems across a wide
variety of fields. Some examples include the management of autonomous aircraft tow-
ing vehicles [5], autonomous warehouse systems [19], coordinated office robots [18] and
traffic optimisation [2]. Apart from its many practical applications, research on optimal
solutions for CPF helps shedding light on the theoretical hardness of this problem and
others of similar complexity.

Contemporary approaches to solve the CPF problem include polynomial time sub-
optimal algorithms [16], as well as methods that generate an optimal solution. Optimal
solvers used for CPF are usually search-based solvers [8, 7, 3, 9] or logic-based solvers [6,
12, 13]. In this project, we focused exclusively on optimal solving based on propositional
satisfiability (SAT).

There has been enough work on SAT-based methods to provide evidence that it
produces good results for this problem, as well as for others with which it shares sig-
nificant characteristics. With this in mind, throughout the duration of this project, we
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explored the work that had been done in the area, and studied many of the different
SAT-based solutions proposed for this problem.

1.1 The problem

CPF represents an abstraction for a variety of problems in which the task is to relocate
a set of physical agents. Each agent is given its initial position in a certain environment
and its task is to reach a given goal position, without colliding with any other agent.
A collision occurs when two agents are planned to occupy the same vertex at the same
time step, or when two agents swap positions over two time steps. At any given time,
an agent may either move to an empty adjacent location, or stand still in its current
location.

Figure 1 is a graphic representation of a set of agents (coloured triangles) positioned
in an environment, and their respective goal positions (circles).

Figure 1: An instance of CPF.

A solution for CPF is then no more than a set of paths, one for each agent, each of
which starts at the initial position and ends at their goal. We usually aim at relocating
all the agents in the minimum time possible. In other words, we consider a solution
optimal if it takes the least possible amount of time for the last agent to reach its goal
position.

The complexity of CPF comes from the cooperation required among the agents,
in order to comply with the restriction that they must not collide with one another.
The more agents are present in the environment, the more interactions there may be
between them, thus providing additional complexity to the task of finding a solution.
In fact, finding an optimal solution to CPF was shown to be NP-hard [11, 20] as the
state-space grows exponentially with the number of agents.
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2 Formal definition – Graph modelling

The environment in which the agents move may be modelled using an undirected graph
G = (V,E), where V = {v1, v2, ..., vn} is a finite set of vertices, each of them representing
a possible position for the agents to occupy, and E ⊆

(
V
2

)
is a set of edges along which

the agents may move.
A distribution of the agents in the environment may then be represented by as-

signing each agent a vertex. Considering A = {a1, a2, ..., aµ} a finite set of agents, an
arrangement of the agents in the vertices of G can be fully described by a location func-
tion α : A→ V . This way, vx = α(ay) is interpreted as “agent ay is located on vertex
vx”.

Figure 2 shows the graph (on the right) resulting from a set of three agents positioned
in a 4-connected grid environment (on the left).

Figure 2: Translation of an instance of CPF into an undirected graph.

Since no two agents may ever occupy the same vertex, α is an injective function,
and allows an inverse function α−1 : V → A. Then ay = α−1(vx) means vertex vx is
occupied by agent ay, and α−1(vx) = ⊥ means no agent is located at vertex vx.

For an instance of CPF to be completely defined, two particular location functions
must be specified: α0 and α+, which define the initial and goal arrangements of the
agents, respectively.

An example is presented on Figure 3. The initial configuration of the agents (the
same represented in Figure 2 on the left, and their goal positions on the right.

Figure 3: Example of a specification of α0 and α+.

An instance of CPF is then fully described as a quadruple:

Σ = [G = (V,E), A, α0, α
+]
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To solve any instance of CPF, we divide time into discrete time steps, and generate
a new arrangement for the agents based on their current positions. The validity of
the agents’ moves in each time step can be dictated by 3 constraints over the graph’s
elements:

(1) ∀a ∈ A,
either αi(a) = αi+1(a)
or {αi(a), αi+1(a)} ∈ E holds

(agents move either along an edge, or not at all)

(2) ∀a ∈ A, αi(a) 6= αi+1(a)⇒ α−1i (αi+1(a)) = ⊥
(agents move to vacant vertices only)

(3) ∀a, b ∈ A, a 6= b⇒ αi+1(a) 6= αi+1(b)

(no two agents may enter the same vertex at the same time)

3 SAT-based Optimal Solving

In this section we provide a brief description of techniques and encodings involved in
SAT-based optimal solving for CPF, namely the Simplified encoding, two different
search techniques, sequential increasing and binary, and the independence detection
method.

3.1 Simplified encoding

In order to solve CPF using propositional satisfiability, there has to be an encoding
from a CPF instance Σ into a propositional formula F (Σ, η), such that the formula is
satisfiable if and only if the CPF instance has a solution for makespan η. Once such
formula has been constructed, it is possible to obtain the optimal makespan by querying
a SAT-Solver with F (Σ, η) for varying values of η.

The simplified encoding was first proposed by P. Surynek in 2014 [13], and it has
been considered to have the best performance among all CPF encodings [14]. It uses
propositional variables X i

j,k and εij for each vertex vj, agent ak and time step i. X i
j,k is

assigned true if and only if agent ak is positioned in vertex vj at time step i, while εij
is true if and only if vj is vacant at time step i.

The following constraints may then be used to model the validity conditions on two
consecutive arrangements:

(1)
∧µ
k,h=1,k<h ¬X i

j,k ∨ ¬X i
j,h

for every i ∈ {1, . . . , η} and j ∈ {1, . . . , n}
(at most one agent is placed in each vertex at each time step)

(2) X i
j,k ⇒ X i+1

j,k ∨
∨
l:{vj ,vl}∈E X

i+1
l,k

for every i ∈ {1, . . . , η − 1}, j ∈ {1, . . . , n} and k ∈ {1, . . . , µ}
(an agent moves along an edge, or not at all)
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(3) X i
j,k ∧ X i+1

l,k ⇒ εil ∧ εi+1
j

for every i ∈ {1, . . . , η − 1}, j, l ∈ {1, . . . , n} such that {vj, vl} ∈ E and
k ∈ {1, . . . , µ}
(the target vertex is vacant before the move, and the source vertex will be vacant
after it)

(4) εij ⇒
∧µ
h=1 ¬X i

j,h

for every i ∈ {1, . . . , η}, j ∈ {1, . . . , n}
(relation between variables)

The instance’s initial arrangement, α0, is expressed through the following con-
straints:

(5) X 0
j,k for vj ∈ V if there is ak ∈ A such that α0(ak) = vj

¬X 0
j,k otherwise

Likewise, the agents goal positions in the environment, α+, are encoded in the
constraints:

(6) X η
j,k for vj ∈ V if there is ak ∈ A such that α+(ak) = vj

¬X η
j,k otherwise

3.2 Sequential Increasing Search

In order to get an optimal solution for an instance of CPF, we repeatedly try to find
a solution of makespan η, for varying values of η. The simplest approach, sequential
increasing search, or UNSAT-SAT, is described in Algorithm 1. It consists in repeat-
edly testing the instance for sequentially increasing values of η, starting with a Lower
Bound (LB), for example, η = 0 (initial distribution identical to the final distribution).
The first η for which a solution can be found is the cost of an optimal solution. For
this process to be complete, an Upper Bound (UB) for the makespan must also be de-
fined, otherwise the computation would not terminate when dealing with an unsolvable
instance.

Algorithm 1 Find Optimal Solution using Sequential Increasing Search

Input: A CPF instance Σ
Output: An optimal solution for the instance

η ← LB
while η ≤ UB do

F (Σ, η)← encode as SAT (Σ, η)
if solve SAT(F (Σ, η)) then

S ← extract solution(F (Σ, η))
return S

η ← η + 1

return ∅
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3.3 Binary Search

Alternatively, as a way to reduce the number of necessary iterations, a binary search
can be used [4]. The instance is first tested for makespan η = avg(UB,LB). Then,
depending on whether or not a solution is found, the bounds of the search are updated.
If a solution is found for this makespan, then the lower bound is updated: LB = η+ 1;
otherwise, the upper bound is updated: UB = η. When the upper and lower bounds
have the same value, the last value of η for which a solution was found is the cost of
the optimal solution. The pseudo-code is shown as Algorithm 2

Algorithm 2 Find Optimal Solution using Binary Search

Input: A CPF instance Σ
Output: An optimal solution for the instance

η ← avg(LB,UB)
S ← ∅
while LB 6= UB do

F (Σ, η)← encode as SAT (Σ, η)
if solve SAT(F (Σ, η)) then

S ← extract solution(F (Σ, η))
UB ← η

else
LB ← η + 1

η ← avg(LB,UB)

return S

Sequential increasing search will, in the worst case scenario – either the instance is
unsolvable or its optimal solution has makespan η > UB – require UB iterations to
finish, while binary search requires no more than log2(UB). However, given that the
problem’s complexity grows significantly with the makespan for which the instance is
being tested, it is worth noticing that the sequential increasing search will never try
to find a solution for a makespan higher than the optimal. Additionally, sequential
increasing search will completely exploit the SAT-solver’s incremental solving capabili-
ties.

Both searches can be improved by a simple process, done only once for each instance
– find the greatest distance between an agent and its goal, i. e., the length of the
shortest possible path for the agent farthest away from its goal to reach it. This can
be accomplished simply by running a series of µ breadth first searches, to find each
agent’s distance to its goal. By doing this, we can also immediately render unsolvable
any instance on which one agent does not have a possible path to its goal (when the
environment graph is not connected).
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3.4 Independence Detection

CPF has exponential time complexity in the number of agents. To try to overcome
this growth in difficulty, a method called Independence Detection (ID) was proposed
by T. S. Standley in 2010 [10]. This method tries to identify the smallest possible
group of agents for which paths can be found independently of all other agents of the
instance. This way, the original problem is divided into a series of sub problems, each
of which can be solved separately requiring a much lower computational effort. In the
end, all the sub problems’ solutions are combined, originating an optimal solution for
the original problem. Even though this method was originally proposed to be used with
a search-based solver, it was later adapted by P. Surynek in 2017 to be used alongside
a SAT-solver [17].

The ID method is as following: Initially each agent is assigned to a group so that
there are µ groups consisting of exactly one agent. Then, for each of these groups, an
optimal solution is found independently. Every pair of these solutions is evaluated and
if the two groups’ solutions are in conflict (that is, when collision of agents belonging
to different group occurs), the groups are merged and re-planned together. If there are
no conflicting solutions, the solutions can be merged to a single solution of the original
problem.

This method can be improved by considering that each group often allows for more
than one optimal set of paths for its agents. When two groups’ solutions are in conflict,
instead of merging the groups right away, we try to replan one of them, adding clauses
so that the states that originally caused the collision, as well as any others that might
cause a new collision, are now forbidden. This way, not only the current collision
is solved but we also avoid collisions with any of the already planned groups. If such
replanning proves unsuccessful, the same method is tried for the other conflicting group.
Only having both attempts failed are the groups merged. Pseudo-code for the complete
ID method is shown as Algorithm 3.

Algorithm 3 Independence detection method

Input: A CPF instance Σ
Output: An optimal solution for the instance

assign each agent to a group
plan a path for each group G1, ..., Gk

for each conflicting pair of groups do
G1, G2 ←conflicting groups
replan G1 with illegal moves based on all other groups
if failed to replan G1 then

replan G2 with illegal moves based on all other groups

if there are no alternate paths for G1, G2 then
merge G1 and G2

plan a path for the new group

return combined paths of all groups
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4 Experiments

All the experiments were run in a Linux environment, using a 1.4GHz Processor, a
maximum of 8GB of RAM and a timeout of 10 minutes. Glucose 4.1 Simple Solver [1]
was used to solve all SAT queries.

First, a simple implementation of the solver was tested on 1350 4-connected grids
randomly generated using Pavel Surynek’s grid generator [15]. These grids may have
obstacles, which correspond to the absence of a vertex in the environment graph. The
agent occupancy rate on these grids ranges from 25% to 75%, and the obstacle rate
is 10%. A third of these grids are of size 4x4 (4 to 12 agents), another third are 8x8
(16 to 48 agents), and the last are 16x16 (64 to 192 agents). Simplified encoding and
Sequential Increasing Search were used. The results are shown on Figure 4. 16x16 grids
are not represented because none of them could be solved due to memory overflow.

Figure 4: Number of instances solved on 4x4 and 8x8 4-
connected grids by agent occupancy.

After adapting the solver to integrate Glucose’s incremental solving capabilities,
maintaining Simplified encoding and Sequential Increasing Search, there were sig-
nificant improvements to each instance’s CPU solving time. The results can be seen
in Figure 5. This approach has the advantage of keeping relevant information between
calls to the SAT solver, potentially reducing the search space on the following iterations.

(a) Number of instances solved on 4x4 and
8x8 4-connected grids by agent occupancy,
before and after applying the SAT solver’s
incremental capability.

(b) Comparison of solving CPU times before
and after applying the SAT solver’s incre-
mental capability. y = x is represented in
orange to help interpretation.

Figure 5: Incremental solving performance analysis.

Different search methods were tested as well. Binary search had a significantly worse
performance than sequential increasing search, as can be seen on Figure 6. Analysing
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the execution allowed us to conclude that this was due to the fact that the binary search
started with a very high makespan value, which caused the first iteration of the search
to be very slow – the search space grows exponentially with the makespan.

(a) Number of instances solved on 4x4 and 8x8
4-connected grids by agent occupancy, using
binary search and sequential increasing search

(b) Comparison of solving CPU times
using binary and sequential increasing
searches. y = x is represented in orange
to help interpretation.

Figure 6: Binary and sequential increasing searches performance analysis.

To try to compensate for this, a variation of the binary search was tested – instead
of starting the search halfway between the upper and lower bounds, we tried starting it
1/8th of the way. This produced better results, but still not as good as those achieved
with sequential increasing search, as can be seen on Figure 7.

(a) Number of solved 4x4 and 8x8 4-connected
grids by agent occupancy, using binary search,
binary 1/8th variation and sequential increas-
ing search.

(b) Comparison of solving CPU times
using binary 1/8th variation and se-
quential increasing searches. y = x
is represented in orange to help inter-
pretation.

Figure 7: Binary, binary 1/8th variation and sequential increasing searches
performance analysis.

Afterwards, the computation of a lower bound was tested. Before starting the
search, we measured each agent’s distance to its goal using a series of breadth first
searches, and used the highest distance as a lower bound for the search. Furthermore,
if there were any agent with no possible path to its goal (the graph is disconnected),
the instance can be instantly rendered unsolvable. The number of solved instances did
not increase but the solving time showed some improvement, as can be seen on Figure
8.
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(a) Number of solved 4x4 and 8x8 4-connected
grids by agent occupancy, before and after
computing a higher value for the search’s lower
bound.

(b) Comparison of solving CPU times
before and after computing a higher
value for the search’s lower bound.
y = x is represented in orange to help
interpretation.

Figure 8: Lower bound computation performance analysis.

To test the independence detection method a different set of 260 instances were used,
with finer granularity between occupancy rates, and up to 40%. Using this method, we
were for the first time able to solve some larger grids with low occupancy rates: 16x16
and 32x32 grids with occupancies up to 20% and 5% respectively. Using ID caused
slight improvement in the performance in instances up to 20% occupancy in the 4x4
and 8x8 grids, and much worse performance in higher occupancy rates. These results
are shown on Figure 9.

(a) Number of solved 8x8, 16x16 and 32x32 4-
connected grids by agent occupancy, with and
without employing the ID method. 4x4 in-
stances are not represented because all of them
were solved with and without ID.

(b) CPU solving time comparison with
and without ID tested on 4-connected
grids of size 4x4 up to 32x32, with occu-
pancy rates up to 20%. y = x is repre-
sented in orange to help interpretation.

Figure 9: ID method performance analysis.

10



5 Conclusions

In this project, we studied and evaluated several different SAT-based techniques to find
an optimal solution for the problem of cooperative path-finding.

A CPF solver was developed using the Simplified encoding to translate the CPF
problem to SAT, which was then modified: incremental solving was incorporated, se-
quential increasing search was compared with binary search, and tested alongside other
methodologies, such as computing a higher lower bound before starting the search.
Finally, the independence detection method was incorporated and evaluated.

Incremental solving proved to be a valuable tool, as it significantly reduced the
search time in most cases. Sequential increasing search consistently outperformed bi-
nary search, even after modifying the latter to start the search closer to the optimal
makespan value. Computing the agents’ distances to their goals also proved fruitful and
it reduced the total solving time . Applying ID is advantageous in instances with less
than 20% occupancy, causing an increase in solving time in more crowded environments.

Overall, solving methods based on propositional satisfiability emerge as valuable
tools to efficiently find optimal solutions to cooperative path-finding.
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